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Abstract

Confidential Computing is an emerging field in cloud computing that
aims to protect sensitive information from potential threats. Hardware-
based trusted execution environments shield user data and code from
unauthorized access by a malicious tenant on the system. While cur-
rent implementations focus on process-level abstraction, there has been
a trend toward isolating confidential information at the virtual ma-
chine level. However, integrating confidential devices often requires
specialized hardware or encryption, leading to increased computation
overhead and compatibility issues. Arm confidential computing ar-
chitecture (Arm CCA) enables trusted execution environments on the
new generation of Armv9-A processors. It uses a specific set of design
choices to enable powerful VM-based isolated execution. However, it
lacks support for powerful accelerators connected via PCIe. We propose
a system to make confidential PCIe-based accelerators compatible with
Arm CCA without requiring hardware changes or encryption. We im-
plement our approach on the Arm Fixed Virtual Platform simulation
software, using an escape mechanism to communicate with connected
devices. Through evaluation with FPGA and GPU accelerators, we
demonstrate that our method incurs lower overhead than encryption-
based approaches. Although based on simulations, this work provides
insights into the potential benefits of integrating confidential PCIe-based
accelerators into Arm CCA.
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Chapter 1

Introduction

Confidential Computing is an emerging field in cloud computing that isolates
sensitive information from an untrusted cloud provider’s platform. This
is achieved by a hardware-based trusted execution environment (TEE) that
shields a user’s data and code from unauthorized access by a malicious
tenant on the system. This may range from a compromised hypervisor to
a malicious system administrator. While existing implementations, such as
Intel SGX, shield a user’s information at the process-level abstraction, there
has been a growing trend toward isolating confidential information at the
level of virtual machines (VMs) [6, 52, 5, 49]. In cloud deployments, PCIe is
commonly employed to link high-performance CPU cores with specialized
accelerators such as graphic cards (GPUs). These accelerators typically
possess their own dedicated memory, which can be accessed by CPU cores
through memory-mapped IO or DMA (Direct Memory Access).

To facilitate confidential devices in trusted execution environments, previous
work proposed modifications in device hardware to enable TEE operations.
This requires new, specialized hardware such as recent Nvidia GPUs [69] and
does not generalize to existing commodity peripherals [55]. Other techniques
rely on encryption to secure and integrity-protect all data exchanged with
accelerators [85, 90, 55, 50, 53]. This leads to extra data copies and increases
the computation overhead. Additionally, it also breaks compatibility with
an unprotected implementation because of invasive API changes in software
and device-specific encryption logic.

Arm has announced support for confidential VMs in 2021 as part of their
confidential computing architecture (Arm CCA) [6]. CCA introduces a new
security domain for virtual machines, called realm, that isolates confidential
VMs from each other and their hypervisor. In a new set of hardware modifi-
cations, CCA proposes a mechanism called granular protection checks (GPC)
that isolate CPU cores and peripherals at the level of bus transactions and
address translations. These mechanisms allow peripherals to securely access
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1. Introduction

CCA-enabled VMs. Arm currently requires devices to be integrated on the
chip (SoC) and augmented for CCA compatibility. However, most cloud
deployments depend on more powerful accelerators connected with PCIe.

In a larger scope beyond this thesis [82], we present a system to make
confidential PCIe-based accelerators a first-class principle in Arm CCA. We
avoid changes to hardware and do not require encryption and extensive data
copies. In the existing CCA specification, external devices connected over
PCIe can not access realm memory. As a result, we create a safeguarded
memory region in Non-secure world, which is guarded by granular protection
checks and SMMU1 isolation. This region can only be accessed by the realm
VM and the accelerator.

We prototype our implementation on a publicly available simulation software
from Arm, called Fixed Virtual Platform (FVP). FVPs are proprietary executa-
bles that simulate complete Arm-based systems, ranging from the CPU and
microarchitectual behavior to software components. However, the FVP does
not provide a functional interface to connect to PCIe devices, which is instru-
mental in showcasing the functionality of our approach. Hence, to allow a
realm VM to communicate with a functional accelerator, we implement an
escape mechanism to communicate with connected devices of the underlying
host machine. This allows us to experiment with CCA even though hardware
implementations are unavailable in silicon.

We evaluate our method with two existing PCIe-based accelerators, namely
an FPGA and a GPU. When compared to native execution, our method incurs
an overhead of 34%, with a speedup of 1 958% compared to encryption. These
estimates are based on a simulation because no hardware with CCA support
is yet available.

1.1 Contributions and Scope

This report narrows down its scope to the following contributions. Our
primary emphasis is on design and implementation aspects specifically
related to breaking out of the proprietary FVP and interacting with functional
accelerators. For a more extensive comprehension of the entire design, we
direct readers to the related work in [82].

1. PCIe accelerators in FVP:

• We design and develop a mechanism to connect functional PCI-
based accelerators to the Fixed Virtual Platform (FVP).

• We apply this mechanism to two specific devices on the underlying
host machine, namely an FPGA and a GPU.

1The Input-Output Memory Management Unit (IOMMU) on Arm is called SMMU
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1.2. Structure of this Document

2. Encryption Reference Implementation:

• To evaluate the effectiveness of our approach, we develop a refer-
ence implementation based on encryption.

• This implementation serves as a benchmark to compare and assess
our approach against existing encryption-based methods.

3. Driver Compatibility Layer:

• We sketch a prototype of a driver compatibility layer that integrates
accelerators without requiring modifications to the current drivers.

• We evaluate how to model PCIe interactions from the perspective
of a realm VM in the FVP’s limited PCIe simulation.

4. Benchmarking:

• And lastly, we instrument and benchmark our approach against
different implementation variants with a set of tailored bench-
marks for the FPGA and GPU devices.

1.2 Structure of this Document

In Chapter 2, we present background information on confidential computing,
specifically Arm CCA. We summarize important aspects of the Arm 64-bit
architecture, Fixed Virtual Platforms (FVPs), and dive into more details on
confidential device assignments for CCA. In Chapter 3, we elaborate on the
design and implementation of a passthrough mechanism to channel DMA
and memory-mapped I/O requests in and out of the FVP. We apply this
design to two accelerators, a GPU and an FPGA. Next, in Chapter 4, we
evaluate the effectiveness of our approach and benchmark it against a method
that uses encryption. We present related work in Chapter 5 before we discuss
future work in Chapter 6 and conclude our findings in Chapter 7.
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Chapter 2

Background

In this chapter, we provide background information on confidential com-
puting and technical details on Arm’s confidential computing architecture
(Arm CCA). Subsequently, we motivate the need for confidential acceleration
by categorizing peripherals into integrated and PCIe- enabled devices and
summarize our method for trusted device assignment in Arm CCA. Lastly,
we give an overview of Fixed Virtual Platforms (FVPs), Arm’s hardware
simulator to validate and test software functionalities even if the underlying
hardware is unavailable. While writing this report, Arm CCA is actively
being developed, and no implementations in silicon are available yet.

2.1 Confidential Computing

Confidential computing is a field of research that focuses on safeguarding
data during computation by utilizing a hardware-backend trusted execution
environment (TEE). It protects data and code from being observed or altered
by privileged software or hardware on the system. These entities may be the
operating system or peripherals such as a graphics card (GPU).

Definitions. The Confidential Computing Consortium (CCC) defines a
trusted execution environment through a minimum of three desirable prop-
erties [33]:

Data Confidentiality. Unauthorized entities on the system cannot view data
while it is in use in the TEE.

Data Integrity. Unauthorized entities cannot modify the data while it is in
the TEE.

Code Integrity. Unauthorized entities cannot modify the executing code in
the TEE.
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2. Background

Unauthorized entities in this definition may be the operating system, devices
on the system, system administrators, or anyone with access to the hardware.

Attestation. In addition to providing an execution environment for trusted
computing, it is important to establish that the environment is in a trust-
worthy state. This is referred to in the literature as attestation. Without a
mechanism for attestation, a malicious system can simulate a tampered TEE
and deceive other parties to trust it. We refer to the work by Ménétrey et
al. [66] for an overview of attestation methods in TEEs.

Trusted Computing Base. The trusting computing base (TCB) refers to a
set of components on a system (software, firmware, hardware) that play a
crucial role in ensuring the security of the system. Bugs within the TCB can
potentially jeopardize the entire system. Hence, it is of interest to keep the
TCB as small as possible to strengthen the system’s security properties. In
a commodity operating system such as Linux, the TCB includes everything
underneath the OS and the Linux kernel itself [81].

VM Isolation. There are various levels of abstraction to implement a trusted
environment. They range from fine-grained function isolation to application
isolation to more coarse container and virtual machine isolation. We refer
to Chapter 5 for a study of related work. As we will see in the next section,
Arm implements an approach at the granularity of virtual machines.

2.2 Arm Confidential Compute Architecture

In its upcoming version of the Arm architecture, Arm implements a TEE at
the level of virtual machines. These new changes are part of Arm CCA, a set
of hardware and software extensions that aim to facilitate trusted execution
environments for VMs. To encourage community driver development, Arm
develops firmware components openly [11, 21, 19, 20] and makes early drafts
of design specifications publicly available. Before introducing CCA, we
establish exception levels, stage 2 translations, and security domains in the
Arm 64-bit (AArch64) architecture:

Exception Levels. Like most hardware architectures, the Arm architecture
provides different levels of protection rings for executing code to enable a
mechanism for security and isolation. On Arm 64-bit hardware, we can have
up to 4 exception levels, ranging from least privileged user mode EL0 to
most privileged root mode in EL3. User and kernel mode functionality is
facilitated in EL0 and EL1. The higher privilege modes provide a virtual-
ization layer for a hypervisor (EL2) and a secure monitor mode for trusted
execution environments (EL3). However, these may not be available on all
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2.2. Arm Confidential Compute Architecture
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Figure 2.1: Exception Levels in Arm 64-bit architecture and instructions to context switch
between them.

Arm processors. The diagram in Figure 2.1 depicts the exception modes and
instructions to jump between them. The architecture does not specify which
specific software components run at each exception level [24].

Stage 2 Translations. Stage 2 translations are a set of translation tables in
the address translation of the Memory Management Unit (MMU). They allow
a hypervisor to control the memory access of a VM in hardware, ensuring
that the VM can not break out of its sandbox. Specifically, they control which
memory the VM can access and which memory is mapped into the address
space of the VM [23]. AArch64 has optional support for stage 2 translations.

Security States. To further compartmentalize code running on a system,
the AArch64 architecture defines multiple security states. A security state
defines which exception levels and memory areas can currently be accessed.
Most Cortex-A processors implement two security states, namely non-secure
and secure state.

The term world in AArch64 terminology refers to the combination of a security
state and a physical address space. As such, a Processing Element (PE)1

running in non-secure world has access to the Non-secure physical address
space. A PE running in secure world can access both secure and non-secure
physical address spaces [24].

New Worlds. Arm CCA introduces support for two additional security
states, namely realm and root state. Similarly to the secure world, a PE
running in realm world can access its own physical address space (PAS) and
the non-secure PAS.

1Arm refers to a CPU as a PE, to refer to everything with its own program counter and
can execute code.
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Security

State

Non-Secure

PAS

Secure

PAS

Realm

PAS

Root

PAS

Non-Secure ✓ ✗ ✗ ✗

Secure ✓ ✓ ✗ ✗

Realm ✓ ✗ ✓ ✗

Root ✓ ✓ ✓ ✓

Table 2.1: Physical Address Space (PAS) accessible in each security state.

A PE is in the root world when it is running in EL3. It then has access to all
available PAS: non-secure, secure, realm, and root. Table 2.1 summarizes the
access matrix.

Arm CCA Architecture Before the introduction of Arm CCA, virtual ma-
chines on Arm had to trust the underlying hypervisor that managed them.
This posed the risk of confidential data leaks because no trusted execution
environment existed. Armv9-A architecture introduces a new type of isola-
tion for a virtual machine called realm. Code and data running in a realm
VM are protected from being accessed and modified by the hypervisor.

App

Realm VM

Kernel

RMM Hypervisor

EL0

EL1

EL3

EL2 Hypervisor

Non-Secure WorldRealm World Secure World

Root World

Hardware

Monitor

App App

VM

App

Kernel

App

VM

App

KernelRSI

RMI

Figure 2.2: Arm CCA architecture, showing a setting with a realm VM (yellow) and two ordinary
VMs (gray). Software TCB for a realm VM in red. RSI and RMI are interfaces implemented in
the RMM that bridge realm VMs and the hypervisor.

Although the hypervisor manages scheduling and resource allocation, it
cannot access the realm VM once it is created. This avoids the need to
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2.2. Arm Confidential Compute Architecture

duplicate hypervisor functionality in the realm world, keeping the trusted
computing base (TCB) small.

To allow the isolated execution of a realm VM, a new software component
called the realm management monitor (RMM) is created, running in realm
world in EL2. The RMM is trusted by the realm VM and acts as an interme-
diary between the hypervisor and the realm VM.

The hypervisor interacts with the RMM through the realm management
interface (RMI) to manage the realm VM. The RMM uses the realm service
interface (RSI) to provide services to the realm VM.

Isolation between realm VMs is accomplished with stage 2 translations which
the RMM sets up and manages [24]. In Figure 2.2, we present the high-level
architecture of Arm CCA.

Granular Protection Checks. At the core of Arm CCA lays a set of new
hardware checks, so-called granular protection checks (GPC). Recall from
the previous section that RME provides four physical address spaces. To
guarantee isolation enforcement for all environments, the Memory Manage-
ment Unit (MMU) implements additional access controls. These controls are
applied to all address translations of CPU cores and device memory accesses.

Cluster 0

PE0

Core0 Core1

GPCGPC

Interconnect

GPC

On Chip
devices

PCI
devices

SMMU

DRAM Non Coherent
Interconnect

Figure 2.3: Overview of Granular Protection Checks (CPC) to enforce memory isolation between
different security states. SMMU in Arm terminology is the equivalent of IOMMU on Intel.

After a page table walk, the MMU checks access permissions in special
tables, so-called granular protection tables (GPTs). GPTs reside in root world
memory and are managed in EL3 by the monitor software.

The monitor software has the ability to dynamically update the GPT, enabling
the movement of DRAM memory across different security states. Whenever
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2. Background

an entry in the GPT is changed, the GPCs are synchronized and may trigger
the flushing of stale states [24].

We further note that the monitor can maintain multiple GPTs in memory
and choose which one to use for each GPC. In Figure 2.3, we highlight these
checks in a simplified architecture diagram.

2.3 Confidential Peripherals

Arm CCA does not allow devices to access realm world memory. This is
similar to other TEE architectures like Intel SGX and AMD SEV.

When analyzing accelerators on a system, we typically categorize devices
into two groups: Integrated accelerators and PCIe accelerators. Arm CCA
currently requires devices to be on-chip to be compatible with confidential
computing.

Integrated Accelerators. Integrated accelerators are embedded in the system-
on-chip (SoC) and do not have their own memory. They share the same main
memory with the CPU cores. A bus-level access control mechanism used for
CPU isolation can be applied to these accelerators as well. This approach is
conceptionally simpler than PCIe device access and has been implemented
in Arm TrustZone [38] and RISC-V [26, 79]. Popular examples of on-chip
devices are Immortalis and Mali GPUs and Mali NPUs (Neural Processing
Units).

PCIe Accelerators. In cloud deployments, PCIe is commonly employed
to link high-performance CPU cores with specialized accelerators. These
accelerators typically possess their own dedicated memory, which interacts
with CPU cores through memory-mapped I/O and DMA (Direct Memory
Access) requests. However, it is essential to note that bus-level access control
mechanisms like Arm TrustZone [7] or RISC-V PMP [62] are not designed
for these standalone accelerators. As a result, existing solutions rely on
encrypted communication between VMs and the accelerators. The VM
encrypts data in software and sends it to the accelerator, which decrypts
it using accelerator-specific logic. Similarly, results are encrypted by the
accelerator and transferred to CPU memory, requiring the VM to copy and
decrypt the data.

This extensive data copying and the overhead of encryption create a potential
for optimizations and improvements. In [82], we dive into software modifica-
tions to enable secure device access for a realm VM without any hardware
changes to Arm CCA or accelerators.
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2.4. Arm Fixed Virtual Platform

Our Approach. As mentioned earlier, the current state of Arm CCA prevents
external devices connected via PCIe from accessing realm memory. Therefore,
our approach outlined in [82] aims to achieve its design objective without
changes to the hardware design of Arm CCA. To enable secure device
assignment, we set up a shared memory region in unprotected Non-secure
world memory. Without further safeguarding, this region has no integrity
and confidentially guarantees. We then program the granule protection
checks (GPC) to guard the region such that it can only be accessed from the
realm and root world. We call this new region Non-secure protected memory.
From the view of a PCIe device, this region still looks like normal-world
memory. Hence it can be accessed according to Arm CCA. To isolate that
memory region from distrusting realm VMs, we further adapt the RMM’s
stage 2 translations. This safeguards the region at the CPU level. However,
these measures do not protect from malicious devices, which may DMA into
non-secure world memory directly. To adequately safeguard Non-secure
protected memory from a malicious device, our method further involves
programming the SMMU2 and its stage 2 translation tables.

2.4 Arm Fixed Virtual Platform

Arm Fixed Virtual Platforms (FVPs) are pre-built executables that simulate
complete Arm-based systems, including processors, devices, and software
components. They are available as proprietary binaries and target the valida-
tion of software functionality when the underlying hardware components
are not yet manufactured. They have become integral in computer archi-
tecture research and software development to conduct early-stage testing
and simulate complete Linux and Android systems. ARM offers a range of
pre-built FVPs, including FVP Base RevC-2xAEMvA. This version is actively
used to develop and prototype CCA software. While not completely Armv9
compliant, it emulates two AEMv8-A clusters of four Armv8 cores and has
initial Realm Management Extensions (RME) support [8].

Fast Models. Fast Models is a term by Arm that refers to the software sim-
ulation of an individual hardware component, such as a Cortex-A53 model
for a CPU. FVPs are binaries integrating different Fast Model components to
build a complete system. In Figure 2.4, we highlight the various Fast Model
components built into Base Platform RevC, the Fixed Virtual Platform (FVP)
version we use in the scope of this work.

Virtual Machine Managers. Comparing FVPs with a virtual machine man-
ager (VMM) such as QEMU [77] or VirtualBox [73], we note that FVPs are

2SMMU is the equivalent of the IOMMU on Intel architecture.
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Interconnect (CCI550)

DRAM SRAM Generic
Timers

System
Controller

Trust
Zone

Power
Controller USB Ethernet GIC

Cluster 0 Cluster 1 PCIe SMMU

Mali

Figure 2.4: Overview of Fast Model components in FVP Base RevC-2xAEMvA

more accurate in simulating the underlying hardware as they simulate the
CPU and microarchitectural behavior. In contrast, a virtual machine monitor
abstracts away everything underneath its supported instruction set architec-
ture (ISA). As we are interested in benchmarking hardware functionalities
still under development in the Armv9 specification, we can not use a VMM
to prototype our design.

Peripherals. While FVPs simulate different peripherals on the system, many
simulated devices only expose their expected interface and are implemented
as non-functional stubs. For instance, FVP Base RevC-2xAEMvA contains a
Fast Model component BasePlatformPCIRevC, which simulates a limited
implementation of the PCIe standard. The bus incorporates two dummy
devices that announce themselves as virtio block devices [8]. We can configure
the size of their base address registers (BARs) and access their configuration
space. Nevertheless, these PCI devices are solely stubs and do not simulate a
particular accelerator, such as a graphics card or a field programmable gate
array (FPGA). Hence, we cannot use the simulated devices in the FVP to
demonstrate functional accelerator interactions.
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Chapter 3

Design & Implementation

This chapter delves into the design and implementation of PCIe periph-
eral device access on the Fixed Virtual Platform. Throughout this report,
when discussing different implementation variants and referring to Our So-
lution, we refer to an implementation built on the high-level architecture
motivated in Chapter 1. For a more comprehensive understanding of the
implementation described earlier, we direct readers to the related work [82].
The author of this report is coauthor in [82]. For the remaining sections of
this document, we focus on implementation and design aspects specifically
related to breaking out of the FVP and interacting with real accelerators.
These mechanisms were instrumental in showcasing the practicality of the
aforementioned implementation.

We first elaborate on a mechanism to break out of the proprietary FVP. We
then discuss in Section 3.3 methods to implement memory-mapped I/O
and DMA capabilities in the Fixed Virtual Platform and the underlying host
machine. We apply these methods to a GPU and an FPGA in Sections 3.4
and 3.5. To compare the effectiveness of our solution with an encryption
approach, we detail the design of an encryption method in Section 3.7. The
remaining parts of this chapter are dedicated to a driver compatibility layer
and how we model PCIe interactions from the perspective of a realm VM in
the FVP’s limited PCIe simulation.

3.1 Peripheral Access and Escape Mechanism

As we will see in the next sections, we aim to support two accelerators
and a set of standard benchmark suites. Based on these goals, we focus on
supporting functional GPGPU (general purpose GPU) programming on the
FVP and interactions with an FPGA accelerator. We first establish different
design approaches toward a general direction of implementation before we
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3. Design & Implementation

introduce a general-purpose framework to channel information in and out of
the Fixed Virtual Platform (FVP).

3.1.1 Design Evaluations

We consider the following avenues for device interactions on the FVP.

Full Device Simulation. Instead of bringing a device into the FVP, we can
simulate an accelerator completely within the FVP. For the GPU, several
research projects are available which implement a GPU simulation
in software [46, 84]. With this approach, we build an adapter that
integrates the simulation software into the operating system on the
FVP such that it appears as a GPU device for a GPGPU benchmark
program. On the one hand, complete virtualization is likely to be slow,
given that it has to run within the FVP on an x86 host machine. On the
other hand, a pure software simulation does not have dependencies on
the host machine and can easily be ported and reproduced on other
systems. To our knowledge, no general-purpose software simulations
are available for FPGA accelerators.

Non-Functional Device Stub. An approach with a device stub integrates
a register or memory interface into the FVP. This interface aims to
be compatible with an existing device driver. The NoMali stub GPU
model [37] is an example of this approach. They expose a compatible
register interface to work with the Linux Mali driver stack without
simulating a Mali-based GPU. This method would not create correct
benchmark results as no real GPU rendering and computation are
involved. The interface solely returns garbage output. The authors state
that NoMali achieves an accuracy in CPU benchmark metrics within
5% compared to a detailed GPU model [37]. While this approach is
lightweight and integrates well with an existing driver stack, it can
not be used for a GPGPU benchmark suite because it provides no
functional computation. If we target a method towards a device stub,
we implement an Nvidia hardware stub that exposes the same driver-
facing API as an Nvidia card. Nevertheless, Nvidia GPUs on the PCI
bus are inherently more complex than an SoC (System on a Chip)
peripheral like a Mali GPU [56].

Host Peripheral Passthrough. Since the underlying host machine can access
real accelerators, we aim to side-load them into the FVP in this approach.
For this to work, we need a reliable method to break out of the FVP’s
hardware abstractions. If we aim for a design towards this approach,
a central issue is where precisely in the call stack we want to escape
to the x86 host and what level of abstraction we want to expose to
the FVP. Arm provides for its paying customers a media component
bridge, which allows the existing Mali GPU component on the FVP
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3.2. Page Fault Escape Mechanism

to do correct functional computations [16]. However, this project is
specific to the GPU, proprietary, and not available to us.

We prioritize functional correctness and a design that is not restricted to the
GPU and can be applied to different types of accelerators. Based on this
reasoning and exploration, we opt for an approach towards a Host Peripheral
Passthrough method.

3.2 Page Fault Escape Mechanism

To facilitate an escape to the host, we suggest a broader framework to
establish a communication channel between the FVP and its host machine.
This method uses a set of x86 64 kernel patches and a custom page fault
implementation.

fault.c faulthook.c

/sys/kernel/
debug/faulthook

invokes configures

page faults

Linux in-tree Kernel

open, close,
ioctl, poll

CPU

faulthook
-mod.c

userspace
manager

notifiesresumes

Figure 3.1: Architecture of in-tree kernel changes to enable custom page faults on x86.

3.2.1 Introducing Faulthooks

With the term faulthook, we refer to a custom page fault and an associated
callback in userspace. During a custom page fault, the faulting application is
paused and remains descheduled until the callback in userspace explicitly
resumes the application. We implement support for faulthooks with a set of
in-tree patches in the Linux kernel. Figure 3.1 visualizes the designed kernel
changes. The faulthook implementation in faulthook.c adds support for
custom page faults in the kernel.

If the CPU traps because a page fault occurred, the kernel’s page fault imple-
mentation (fault.c) can dispatch page faults to faulthook.c. A userspace
facing faulthook-mod.c exposes a character device for configuration pur-
poses. With it, a manager in userspace can register a callback and be notified
if custom page faults occur.
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Userspace Facing API. We expose a DebugFS character device to userspace
to interact with faulthooks.

1 int fh_enable_trace(unsigned long address, unsigned long len,

2 pid_t pid);

3 pthread_t *fh_run_thread(fh_listener_fn callback, void* ctx);

A userspace manager can register a custom page fault by specifying the
target’s process id and an address range (virtual addresses). It then can
schedule a worker with a custom callback which is invoked whenever the
target processes access an address in the given range. Within this callback, the
manager can manipulate the behavior of the target application and control its
scheduling as desired. For instance, it can communicate with an accelerator
and re-schedule the target application once the accelerator result is available.

Faulthook Page Fault Handler. We allow faulthooks to occur on a write-
only or read-and-write basis. As such, we clear the write or present bit in
the page table entries (PTEs) associated with the address range in the target
application. We implement faulthooks based on the single stepping feature
of the x86 architecture. Single-stepping is a debugging feature that allows us
to execute instructions on the CPU one at a time [35].

Upon a faulthook page fault, we trap into kernel space and disarm the fault-
ing PTE by setting it to present and writable. Subsequently, we de-schedule
the trapping process and hand over control to the registered userspace
manager process. Once the manager re-schedules the target application,
we enable single stepping and resume the target application. With single-
stepping enabled, the CPU executes a single instruction before generating a
trap interrupt. In the trap handler, we then arm the faulted page again and
disable single-stepping. This concludes a single faulthook.

To enable single-stepping, we reuse some of the functionalities implemented
in kmmio subsystem of the Linux kernel.

Limitations. To properly catch a single-stepped instruction, we must pin
the target application to a single core. Since we single-step solely a single
instruction, this causes not a big performance overhead. For simplicity of our
implementation, we keep the target application pinned to the same core. As
a result, the target application can no longer exploit parallelism on the host.
While we did not benchmark this behavior, we did not observe a significant
decline in performance for the Fixed Virtual Platform (FVP).

Another limitation is that we can single-step only a single target application
per core, and that application can not use single-stepping debugging features
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1 int fh_do_escape(fh_ctx_t *fh_ctx, int action)

2 {

3 /* increment nonce and add context to escape */

4 unsigned long nonce = ++fd_ctx.fh_nonce;

5 fh_ctx->fh_escape_data->turn = FH_TURN_HOST;

6 fh_ctx->fh_escape_data->action = action;

7 /* serialization of instruction stream */

8 asm volatile("dmb sy");

9 /* escape to the dark side ... */

10 fh_ctx->fh_escape_data->nonce = nonce;

11 /* and we are already back here */

12 // ...

13 }

Listing 1: Excerpt of escape routine running on AArch64 Linux on the FVP
after escape channel is established. Error handling and locking omitted.

itself. However, these concerns are not an issue for the FVP because it does
not use debugging features during normal operations.

3.2.2 Escaping the FVP

With a general purpose framework in place, we now address how to escape
out of the Fixed Virtual Platform (FVP). Based on our observations, we noted
that by deactivating the CPU cache hardware components on the FVP, any
write to memory within the FVP promptly becomes accessible within the
memory of the underlying Linux host process. As our focus does not lie
on simulating microarchitectural cache behavior, we can disable caching
simulation without encountering uncertainties.

Listing 1 demonstrates the escape in a code snippet, whereas Listing 2 details
the underlying data structure between the x86 host and FVP. In this setting,
we mark the memory range of a nonce field as escape memory. Any write to
it invokes a faulthook page fault.

Escape Mappings. One of the missing pieces to escape to the host is to agree
on a common escape buffer between x86 and the FVP’s emulated DRAM.
When we allocate memory on Linux within the FVP, we lack knowledge
about the specific location within the host process where this memory is
situated. Hence, we aim to build a mapping function f that maps a physical
address on the emulated FVP’s DRAM to a virtual address on the underlying
x86 host.

17



3. Design & Implementation

1 struct faultdata_struct

2 {

3 volatile unsigned long nonce; // any write triggers escape

4 unsigned long turn; // turn: host or guest

5 unsigned long action; // type of escape

6 unsigned long data_size; // payload size

7 char data[0]; // payload

8 };

Listing 2: Data structure to facilitate an escape. Any write to the nonce
triggers an escape to the x86 host. A variable-size payload contains the
exchanged data.

f : paddrFVP → vaddrx86 (3.1)

To build such a function, we employ a similar approach to that of cheat
engines. In the initial stages of the FVP Linux boot, we systematically
examine all unoccupied memory pages and assign them a magic value along
with their corresponding physical address. On x86, we scan the FVP’s address
space for magic values and build a mapping between the identified physical
addresses and their corresponding virtual addresses in the host process.

Note that we can only build such mappings for unoccupied memory because
building a mapping requires us to write to memory. This can potentially
destabilize the kernel if that memory is already occupied. In a later phase
of the kernel boot, we ensure that unidentified pages are not passed to the
buddy allocator and are not made available to the rest of the system. The
lost memory lies in the order of 100MB, which is a modest quantity. With
this mapping function in place, we can now allocate memory within Linux
on the FVP and identify that memory on the x86 host.

Memory Alignment. Another matter that requires attention is the memory
alignment of the FVP’s emulated DRAM memory. Note that the FVP is a
proprietary software product and is not designed to break out its simulated
hardware abstractions. As a consequence, the DRAM is not properly page
aligned on the x86 host and appears at various places in heap memory.
This is problematic because non-contiguous and non-page-aligned memory
complicates DMA and I/O memory mapping.

We studied the FVP’s proprietary memory allocator and reroute all memory
allocations for DRAM memory to a dedicated place in its address space.
Thereby we ensure page alignment and continuity. The implementation
uses explicitly preloading with the LD PRELOAD trick [74] and custom glibc
allocator functions.
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on fault(context): int
on init(): int
on exit(): int

gpu comm.c

on fault(context): int
on init(): int
on exit(): int

fpga comm.c

usr manager.c

Figure 3.2: Two userspace manager backends for both of our accelerators, a GPU and an FPGA.

Escape through File Sharing. Before we decided on an approach with
page faults, we investigated available hardware components on the FVP. One
component of interest is the virtio 9P1 (Plan 9 Filesystem Protocol) component,
which facilitates file sharing between the x86 host and an operating system
running on the FVP. We prototyped an implementation based on a custom
FUSE file system on the x86 host, the 9P hardware component on the FVP,
and 9P drivers in the Linux kernel. 9P is based on TCP/IP and involves
much marshaling and data copies. This raised concerns about its scalability,
which is why we did no further develop this approach.

3.2.3 Userspace Manager for FVP

With a framework for a reliable communication channel in place, we can
now address the x86 component. Throughout this report, we refer to the x86
counterpart as the Userspace Manger. Its job is to gap all device functionalities
not available within the FVP. We implement a general framework for a
manager in userspace and derive two implementations from it: one for a
GPU accelerator and another for an FPGA. Figure 3.2 depict their life cycle
methods. To avoid memory copies on the escape buffer, we use PTEditor [65]
and map the escape buffer into the address space of the userspace manager.

3.3 Host Peripheral Passthrough

With the groundwork laid out to escape out of the FVP, we now proceed to
address technical details in interacting with host devices. For this, we first
focus on exploring methods to map device memory into the FVP before we
introduce techniques to enable direct memory access (DMA). Taking into
account the code complexity of existing device drivers, we suggest a range
of modifications that can be implemented with or without patching the host
driver.

1FVP Base RevC 2xAEMvA.bp.virtiop9device

19



3. Design & Implementation

3.3.1 Overview Memory-Map

Before we investigate how to map accelerator memory into the FVP, we
first establish how the Linux kernel builds memory mappings. By memory
mapping a device, we refer to the process of mapping a range of userspace
addresses with device memory. Consequently, whenever a program reads or
writes to these addresses, the CPU will retrieve the data from the device’s
memory rather than DRAM. Changing a range of userspace addresses in-
volves modifying a program’s page table entries and flushing the translation
look-aside buffer (TLB). The kernel offers abstractions for common device
driver tasks, alleviating the need to manipulate page tables directly. Never-
theless, as we will explore in the following section, there are specific tasks
where the manual modification of page tables becomes necessary.

When a user program calls mmap to map device memory into its address space,
the Linux kernel creates a new VMA (virtual memory area) to represent that
mapping. The kernel then invokes the device driver that implements the mmap
method to complete the creation of the VMA. When implementing mmap in a
device driver, there are two approaches to create VMA mappings [34]. The
first approach uses remap pfn range to create new page tables eagerly, while
the latter approach uses page faults and the nopage method to map memory
lazily. The former method is more straightforward and sufficient for most
use cases. As we will see in a subsequent chapter, we use remap pfn range

to implement memory mapping for the FPGA accelerator. GPU memory
mappings are more complex and need more flexibility. Hence, they make
use of the nopage method.

3.3.2 Memory-Map with Patching the Host Driver

In the case of a small device driver, we suggest implementing a patch within
the x86 driver code to facilitate memory mapping. This approach is effective
for the FPGA driver because it uses the simpler remap pfn range function.
However, when it comes to GPU drivers, we advise not to patch the driver
itself. This is primarily because GPU drivers rely on the DRM subsystem
(Direct Rendering Manager), and modifications in DRM can have unintended
side effects on other drivers on the system.

In the design outlined in Figure 3.3, we present our approach to map device
memory using host driver patches. The figure showcases two sections, the
top and the bottom, both depicting the same sequence of events. The top
section emphasizes the interactions occurring within the FVP, whereas the
bottom section highlights the x86 events. We will now list and describe
the steps involved in mapping device memory. The numbering 1 to 7 is
referring to Figure 3.3.

A memory map request 1 originates from a userspace application on the
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FVP phy. Memory

x86 virt. Memory

Process: FVP

Linux on FVP

DRAM

Process: Userspace Manager

user space: kernel space:

ioctl()

Device Memory

7

modify remote Page Tables

5

6

Patched
Driver

DRAM

FVP phy. Memory

x86 virt. Memory

user space: kernel space:

void *a =
mmap()

Process: FVP

Linux on FVP

escape

Process:
Userspace Manager

allocate

1
2

3

4

Stub
Driver

Figure 3.3: Memory-Map design with patches in x86 host device driver. A patched device driver
(6) creates a memory mapping on behalf of the FVP. Careful memory alignment ensures that the
memory mapping appears at the right location within the emulated FVP memory.
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FVP. A program calls mmap on a file description associated with a device
driver. The Linux kernel creates a new VMA (virtual memory area) to
represent the new memory mapping and invokes the device driver to fulfill
the request. Both stub 2 and host 6 drivers implement the same userspace-
facing API. However, the stub driver is aware of its lack of a real accelerator.
Subsequently, the stub driver allocates memory from DRAM and maps it
into the newly created VMA using the remap pfn range function. To ensure
alignment between memory pages on the FVP’s AArch64 hardware and
memory addresses within the x86 Linux process, as discussed in Section 3.2.2,
we have modified the FVP’s host memory management 3 . As such, we can
associate the FVP memory page with a memory page on the x86 host. The
stub driver employs the host escape 4 and invokes the userspace manager.

On the x86 side, we now reformulate the request and call a custom ioctl2

command 5 on the host driver. The host driver contains a patch set to
implement an additional ioctl command. This command replaces the current
memory descriptor with the memory descriptor of the FVP. As a result, the
device driver can process the request on behalf of the FVP instead of the
userspace manager 6 . We create a new VMA, and manually call the original
mmap implementation of the device driver to map device memory into the
FVP’s host process 7 . By ensuring memory alignment and proper cache
control, the device memory is correctly mapped into the FVP and becomes
accessible from userspace 1 .

Creating a new VMA. One of the implementation challenges arises in the
handling of VMAs (virtual memory areas). Normally, when using mmap to
request a memory mapping, the kernel creates a new VMA and invokes the
mmap handler on the driver. However, in our case, we need to modify an
existing mapping instead.

To be more specific, we need to change the page table mappings on the
heap VMA of the host process of the Fast Virtual Platform (FVP). The heap
VMA contains all the FVP’s DRAM. The FVP internally uses malloc to
allocate memory for its emulated DRAM. To ensure reliable behavior when
interacting with device memory, we also need to mark the mappings as
non-cacheable.

In Linux, caching behavior for an address range is managed at the VMA
level. Since we are creating a new device mapping within the heap VMA, we
cannot mark the entire process heap as non-cacheable. We have observed that
the kernel automatically splits VMAs when changing the protection flags
associated with an address range in a VMA. For security reasons, a process’s
heap is always marked as non-executable by default. Hence, to facilitate the

2Syscall for device-specific I/O operations
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Heap VMA

memory bufferProcess: FVP

VMA0 VMA2VMA1

prot: rw- rw-rwx

before split

after split

Figure 3.4: Splitting an existing VMA. Protection flag trick: Change permission flags on a
subrange of VMA such that the kernel is forced to split VMA. As a result, all of our device
mappings are read, write, and executable.

split, we mark the memory range as executable and receive a new VMA in
the correct size, which we then map as device memory.

Since the maximum number of VMAs allowed in a process is constrained
in Linux, we must change the limit for the FVP. Figure 3.4 summarizes the
VMA split.

3.3.3 Memory-Map without Patching the Host Driver

To address the challenges posed by a complex device driver, especially
one that employs lazy mappings using the nopage method, we propose
an alternative memory-map approach that does not require modifying the
device driver’s code. In Figure 3.5, we introduce the architecture of this
approach. While many aspects are analogous to the aforementioned method,
we highlight some of the key differences.

Instead of applying a patch set to the device driver itself, we build a Fixup
Helper kernel module. The following numbering 1 to 6 is referring to
Figure 3.5.

Upon memory map request on the FVP, we create a RAM mapping as
previously. We then escape the FVP’s sandbox 1 and create a memory
mapping in the memory descriptor of the userspace manager ( 2 and 3 ).
This is comparable to calling mmap in the userspace manager directly, even
without the FVP. Subsequently, we need to ensure that the newly created
mappings are also applied to the FVP. For this, the Fixup Helper modifies the
FVP’s address space 5 . It manually removes the existing mappings to RAM
and replaces them with the mapping to the device memory. This process
involves manually updating the FVP’s page table and flushing its TLB. As a
result, we have two mappings in two different processes, both mapping to
the same device memory 3 .
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Figure 3.5: Memory-Map without host driver patches. A fixup helper kernel module duplicates
the mappings from the userspace manager process to the FVP (red).

When the device driver uses the nopage method, the helper module is re-
quired to eagerly page fault all mappings. This comes with a penalty in
performance but ensures that all device addresses are resolved when man-
ually updating the FVP’s page tables. As this approach involves direct
modifications to the page tables, caution must be exercised to prevent insta-
bility in the x86 host system and to ensure proper cleanup of the mappings
when they are unmapped.

We implemented Fixup Helper as a header-only userspace library and a kernel
module. For page table modifications, we utilize the open-source framework
PTEditor [65].

3.3.4 Overview DMA

DMA, or Direct memory access, is a method that allows an accelerator on
the system to directly transfer data to and from main memory without
the need to involve the CPU. We can transfer data in two ways, either
synchronously initiated by software or asynchronously started by hardware.
Another relevant distinction is the type of mapping we create. We generally
distinguish between consistent and streaming mappings. The following
definitions are taken from [34].

Synchronous Transfer. In the example of transferring data from the device,
a userspace program reads on a file descriptor associated with the
device driver. This task is blocking: The driver creates a DMA buffer
and instructions the hardware to write to it. The hardware then reads
from the buffer and informs the device driver with an interrupt upon
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completion. The driver’s interrupt handler acknowledges the comple-
tion and resumes the userspace program, which then can read the data.
This sequence matches well with our escape mechanism as the request
originates from a userspace program on the FVP.

Asynchronous Transfer. In an asynchronous transfer, the device interrupts
the driver with new data. The driver allocates a new buffer and instructs
the hardware to write to it. Upon completion, the driver is again
interrupted and can dispatch the data to any relevant process interested
in the data. Our escape mechanism is not compatible with this approach
due to its asynchronous nature. If we intend to enable asynchronous
transfer, we must transform it into a polling-based method.

Coherent Mapping. Coherent mappings have a time spawn across a single
transfer. They must be simultaneously accessible to the CPU and device
and, as a result, must live in cache-coherent memory.

Streaming Mapping. These mappings are typically set up for a single map-
ping and are used if the buffer to work with is already allocated. They
can be non-contiguous and are used if the driver supports scatter-gather
lists. Kernel developers recommend the use of streaming mappings
wherever possible [34].

As we will see in the next sections, we aim to support a standard set of bench-
marks for our accelerators. These benchmarks use synchronous transfers and
streaming mappings. As such, we focus on these functionalities.

Analogous to the memory map design, we add support for DMA with and
without patching the host driver. We will first address our patch set before
we propose an approach that does not require driver patches.

3.3.5 DMA with Patching the Host Driver

The design outlined in Figure 3.6 shows the architecture for enabling DMA
on the FVP. We demonstrate the case of already allocated userspace memory
as this proved to be more challenging. This approach requires no changes
in the FVP userspace application. The app does not require huge pages or
coherent memory allocations from the driver. Numbering 1 to 5 walk
through the steps in Figure 3.6:

A test application allocates memory on the heap on the FVP 1 and requests
the accelerator to write to it. A stub driver (omitted in Figure 3.6) facilitates
the escape mechanism 3 to interact with a host userspace manager. Be aware
that the allocated buffer may be scattered throughout the FVP’s physical
memory and hence also scattered throughout the x86 host memory 2 . We
do not require this memory to be contiguous.
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Figure 3.6: DMA with Patch Set: High-Level interaction between the userspace manager on
x86 and an AArch64 application running in userspace on the FVP. A device driver is patched for
DMA: It acts on behalf of a remote process to enable DMA on the FVP (6).

Subsequently, on the x86 host, we interact with a patched driver to request a
DMA transfer 6 . The following steps hold significance:

Address Mismatch. The virtual addresses in the userspace on the Fast Vir-
tual Platform (FVP) (marked as 1 ) do not correspond to virtual ad-
dresses on the x86 system. We only have information about the mapping
between the physical addresses on the FVP and the virtual addresses
on the host. As such, pointers to virtual addresses on the FVP are not
meaningful on x86. Therefore, prior to performing the escape ( 3 ),
it is necessary to pin all pages to RAM and translate the buffers into
physical addresses on the FVP (Section 3.2.2).

Remote Memory Descriptor. The unmodified device driver incorrectly as-
sumes that the userspace addresses correspond to the memory descrip-
tor of the userspace manager process, whereas they should actually
resolve to the Fast Virtual Platform (FVP). To address this, our patch
set introduces an extra ioctl command that enables DMA operations
involving remote user pages and memory descriptor of another pro-
cess 5 .

Taking into account the aforementioned aspects, the driver constructs a
scatter-gather list that includes pinned remote pages associated with the
FVP’s host process. We keep the FVP unscheduled until the accelerator
completes the DMA transfer, creating the illusion of immediate completion of
the DMA request on the Fast Virtual Platform (FVP). However, it’s important

26



3.4. GPU Device Access

to note that, with the current implementation, only one transfer request can
be executed at a time on the x86 host.

3.3.6 DMA without Patching the Host Driver

The approach presented now offers a simpler implementation that avoids the
need for driver patches. However, this simplicity comes at the expense of
additional memory copies. While we refrain from detailing this approach in
a diagram, its key distinction lies in the use of a Fixup Helper kernel module.
This module utilizes the CPU to copy DMA transfer results to and from the
FVP’s Linux host process. By adopting this approach, we can simplify the
implementation as we can perform unchanged DMA transfers in the x86
userspace manager, albeit at the cost of additional CPU data copies.

Similar to the previous approach with kernel patches, the FVP remains
unscheduled until the accelerator and the Fixup Helper module complete
their data transfers, creating the illusion of immediate completion of DMA
requests. We facilitate this approach for transferring data to and from the
GPU.

3.4 GPU Device Access

In this section, we discuss design and implementation challenges to enable
general-purpose GPU (GPGPU) computations on the FVP. For performance
evaluation, we aim to select a standard set of GPU benchmarks from the
Rodinia test suite [31]. Rodinia is designed for CUDA [39], OpenCL [47], and
OpenMP [28]. This is why our implementation must provide support for one
of these parallel programming models. A further restriction is our available
GPU device. We own an Nvidia GeForce RTX 3080 Ti, which is part of the
Ampere device family, Nvidia’s second most recent GPU architecture.

3.4.1 GPGPU Software Stacks

To facilitate general-purpose GPU programming (GPGPU) on Linux, we need
a kernel and a userspace component. The kernel component interacts with the
accelerator, whereas a runtime component remains in userspace and interacts
with the user’s application. In the next paragraphs, we evaluate available
GPU software stacks before we introduce our implemented approach.

Nvidia Driver and CUDA Runtime Nvidia recently open-sourced their Linux
kernel driver implementations [70]. The kernel modules can be built for
x86 or AArch64 and consist of ca. 900′000 lines of C code. The source
distribution builds five different kernel modules3. While some mod-

3Nvidia Kernel Modules: nvidia.ko, nvidia-modeset.ko, nvidia-uvm.ko,
nvidia-drm.ko, and nvidia-peermem.ko
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ules for handling mode setting operations are not relevant to us, their
interaction with each other and with the CUDA runtime is not clear
and must be further studied. Apart from their complexity in code size,
their userspace component – CUDA Runtime – is not open-sourced and
can not easily be studied. This makes it further more challenging to
port to the FVP. If we choose this technology stack, we have no choice
but to treat the CUDA runtime as a black box and try to execute the
closed-source artifact on the FVP.

Nouveau Driver. The nouveau project aims to build a free/libre software
driver for Nvidia cards [1]. It implements the KMS/ DRM4 kernel
driver and is frequently merged upstream as part of the Linux kernel.
The project focuses on reverse engineering Nvidia cards and creating an
open-source alternative based on that knowledge. As a result, it lacks
support for Nvidia’s most recent system architectures. According to
their project compatibility list, nouveau lacks support for the Ampere
device family, making it incompatible with our GPU [68]. If we choose
this technology stack, we have to face compatibility issues with our
hardware.

libdrm. Libdrm (library for Direct Rendering Manager) is a component of the
nouveau project. It is a userspace library that provides a programming
interface for accessing and managing the DRM subsystem in the Linux
kernel [1]. The project exposes a low-level API to the kernel’s DRM
subsystem through means of ioctl wrappers. If we choose nouveau as
the kernel driver, we interact with libdrm to communicate with the
driver.

Mesa. The mesa project implements open-source runtime 3D graphics li-
braries for the OpenGL, Vulkan, and OpenCL parallel programming
standards [4]. If we choose mesa, we will use the OpenCL variants of
the Rodinia benchmarks, link our benchmarks with mesa’s runtime
library and interact through libdrm with the nouveau kernel driver.

Gdev. Gdev is a software stack that provides an open CUDA runtime and
integration layer for device drivers. It re-implements the CUDA driver
API5 providing runtime support in both the device driver and the
userspace library [58]. Gdev is compatible with nouveau, and the (old)
closed-source versions of the Nvidia driver. It is used in related works
such as Graviton [85] and StrongBox [38].

4KMS: Kernel Mode Setting (display interactions), DRM: Direct Rendering Manager
(GPGPU programming)

5CUDA exposes two user-facing APIs. A runtime API and a driver API. The runtime API
provides implicit initialization, context management, and module management and hence
leads to simpler code. The driver API provides more low-level support and control [71].
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Figure 3.7: Two Nvidia GeForce GTX 460 SE, Fermi Architecture, Release Date 2010. We
purchased these devices on a second-hand online platform. They have excellent open-source
support in the nouveau kernel driver.

Implemented Approach. The paragraph below summarizes our design
options. On the one hand, the CUDA runtime and the Nvidia driver are
closed-source or large in code size. On the other hand, nouveau lacks
proper support for our GPU. Given these constraints, we purchase an old
Nvidia GeForce GTX 460 SE, which has excellent open-source support in the
nouveau driver stack (Figure 3.7). Although its Fermi-based GPU architecture
is already 13 years old, we do not rely on its absolute execution speed and
evaluate its performance relative to a software-encrypted channel between
the CPU and GPU. With proper nouveau support, we can either use OpenCL
with mesa, libdrm and nouveau, or CUDA with Gdev and nouveau.

Approach 1: Nvidia (open-source) driver + official CUDA (closed-source),

Approach 2: Nouveau driver + OpenCL with mesa and libdrm,

Approach 3: Nouveau driver + reverse-engineered CUDA (open-source)
with Gdev.

We opt for Approach 3 because Gdev has a smaller code base and implements
less complex interfaces. Bear in mind that these software components have
to interact with both the AArch64- based FVP and the x86 host. Hence, the
higher their code complexity, the more porting effort is required.

3.4.2 System Architecture and Design

We now discuss Gdev’s architecture because our implementation is built
upon some of its components.
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Figure 3.8: Architecture of Gdev: Gdev provides two modes; in kernel mode (top), a thin Gdev
wrapper interacts through ioctls with the kernel Gdev Runtime. In user mode (bottom), all Gdev
components remain in userspace.

Gdev Architecture. The Gdev [58] software stack consists of a reverse-
engineered CUDA runtime, as well as a stand-alone Gdev Runtime. The
CUDA component implements Nvidia’s CUDA driver API and can be linked
into a user application for GPGPU programming. Figure 3.8 depicts the
high-level architecture, which can be assembled in two modes:

1. In kernel mode (top in Figure 3.8), most of Gdev’s functionality remains
in kernel space. The CUDA component is linked together with a thin
wrapper layer into the user application. The wrapper invokes through
ioctl commands the Gdev kernel module, which interacts with the
nouveau driver. For this approach, nouveau must be patched with a
Gdev-specific patch set.

2. In user mode (bottom in Figure 3.8), all functionality of Gdev remains in
userspace and is linked into the application. The Gdev runtime uses
libdrm to interact with the nouveau driver.

While kernel mode provides a thin interface to interact with the user applica-
tion, it requires kernel patches. The patch set is only compatible with Linux
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kernel 3.3, which is already 11 years old. We tried to up-port these patches to
a recent kernel version but failed because DRM and nouveau have evolved
too much in the last years. User mode, on the other hand, does not require
kernel patches. However, it uses libdrm to interact with nouveau, which
implements a thick interface (> 100 ioctls) and exposes low-level details of
the DRM subsystem to userspace.

x86 Host Escape. For the x86 host escape, we seek a thin interface between
the FVP and the x86 host. Both Gdev’s user and kernel mode are unsatisfactory
because they are either not compatible with a recent kernel version or expose
a too-verbose interface. As a result, we propose a new mode: Merged Mode.
In Merged Mode, we combine the benefits of having a thin user-facing API of
kernel mode and no kernel patches of user mode. In Figure 3.9, we depict the
high-level architecture of Merged Mode.

In our design, a GPU benchmark is executed by a user app ( 1 in Figure 3.9,
blue depicts components of kernel mode while green shows user mode). The
app is linked with the CUDA runtime 2 and Gdev’s wrapper in kernel mode

3 . The wrapper communicates with a merge layer 4 through ioctl syscalls,
which is aware of the x86 escape mechanism. The merge layer escapes to
the x86 host and invokes the userspace manager 5 , which reformulates
the request such that it is compatible with Gdev’s user mode. Consequently,
it invokes Gdev’s Runtime in userspace 6 , which utilizes libdrm 7 and
nouveau 8 to interact with the accelerator on the PCI bus. Throughout
the x86 host escape, the FVP remains descheduled and is resumed once the
accelerator completes the requested task. With this design and the peripheral
passthrough primitives introduced in Section 3.3, we are able to serve all
Rodinia benchmark functionality, including DMA and memory map.

As a result of this approach, device interrupts are outsourced to the x86 host.
Looking at it from the perspective of the merge layer 4 on the FVP, a request
is promptly fulfilled as the FVP remains inactive until the request is handled.
Another drawback of this design is that the request must originate from
within the FVP and be completed immediately. Asynchronous callbacks,
where the device notifies the merge layer of an update, are not supported.
However, currently, we do not encounter any situations where this feature is
necessary.
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Figure 3.9: GPU escape architecture. A user app (1) on the FVP interacts with the host
driver (8). We merge both Gdev modes (user and kernel) to escape on a thin API layer without
integrating libdrm’s internal complexity into the FVP. The diagram depicts the FVP’s Linux
process (top) and the x86 userspace manager process (bottom). The escape is invoked with a
merge layer (red). Green are components of Gdev user mode, while blue are components of Gdev
kernel mode.
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Figure 3.10: High-level architecture of the FPGA device access.

3.5 FPGA Device Access

For the FPGA accelerator, we reuse many design ideas already discussed in
the previous section. The FPGA interactions are fundamentally more simple
than the GPU accelerator.

Design. Figure 3.10 depicts the high-level architecture of the implemented
design. We implement a stub driver in kernel space on the FVP, which
employs the x86 escape mechanism to invoke the userspace manager on the
host. These two components bridge the interactions between the FPGA test
application and the XDMA device driver. The stub driver exposes the same
user-facing API as the XDMA driver, which consists of simple open, close,
mmap, read, write, and ioctl operations.

Implementation. We use a Xilinx Virtex Ultrascale+ VCU118 as our FPGA
device. For the kernel driver on the x86 host, we use Xilinx’s XDMA
driver [89]. Due to its simple design, we apply the driver patch set in-
troduced in Sections 3.3.2 and 3.3.5 to enable memory mapping and DMA.
The FPGA applications are written in Python, so we cross-compile Python 3
as well as libcrypto to run on the FVP.

3.6 Booting a realm VM

With two functional accelerators introduced to the FVP, we now discuss how
we boot a realm VM and interact with these accelerators from within the
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guest VM.

VM Manager. We launch a realm VM with kvmtool, which is a lightweight
tool for hosting KVM virtual machines [86]. Arm recently published patches
for kvmtool and the Linux kernel to deploy realm VMs from the Non-
Secure world [20, 19]. The VM manager implements a small amount of
emulated devices. Most devices are para-virtualized with the virtio protocol.
They appear as normal PCI devices on the guest, and their functionality is
implemented in callback functions within kvmtool. We will address these
virtualized devices in the forthcoming Section 3.9.

Escape Mapping. To revisit an earlier topic from Section 3.2.2, recall that
we exchange the physical addresses of all free memory pages with the x86
userspace manager. For benchmarks running in the realm VM, we apply the
escape mapping in the early boot process of the realm VM. This way, the
userspace manager is aware of all realm private memory regions.

3.7 Encryption-Based Reference Implementation

To demonstrate the overhead caused by a software-encrypted channel be-
tween the CPU and accelerators, we sketch an encryption-based solution for
Arm CCA. As we will see in the evaluation section, we use this implementa-
tion as a reference to compare our approach.

In order to establish an encrypted communication channel, the VM has to
encrypt its data buffer in software and send it to the accelerator, which then
decrypts it using accelerator-specific methods. These are either encryption
kernels in the case of GPUs or encryption IP blocks on the FPGA. Similarly, to
return accelerator results to the realm VM, the device has to encrypt its result
buffer before writing it to a publicly accessible part of CPU memory. Note
that this approach leads to two extra data copies and increases computation
overhead. It also breaks compatibility with an unprotected implementation
because of invasive API changes in CPU and device-specific encryption logic.
This is why our approach can potentially lead to significant improvements
compared to an encryption-based method, as it eliminates the need to encrypt
the communication buffers.

CUDA Encryption Layer. To keep implementation changes to a minimal
extent, we implement an encryption layer that integrates into the CUDA
Driver API within the realm VM. The main goal of this layer is to estimate
the computational effort involved in encrypting data buffers. We allow data
to be garbled and do not require functional correctness as long as the layer
serves as a proxy to estimate the encryption overhead. Taking this into
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1 CUresult cuMemcpyDtoH(void* dest, CUdeviceptr src, unsigned int size);

2 CUresult cuMemcpyHtoD(CUdeviceptr dest, void *src, unsigned int size);

3 CUresult cuLaunchGrid(CUfunction f, int width, int height);

4 CUresult cuMemAlloc(CUdeviceptr *dest, unsigned int size);

5 CUresult cuMemFree(CUdeviceptr ptr);

Listing 3: Function hooks for CUDA encryption layer

consideration, we implement the layer with function hooking in the symbol
resolution process of the linker. We create an additional shared library and
ensure that the linker resolves the symbol from our encryption layer instead
of the CUDA implementation. We account for encryption costs in copying
memory to and from the device, as well as copying kernel launch arguments
to the device. These operations incorporate the most significant transfer
overhead. The hooked functions are presented in Listing 3. To encrypt the
data buffers, we use AES-256 CTR mode implemented in libopenssl 1.1.1q
for the CPU and encryption kernels by Romain Dolbeau [40] for the GPU.

For each memory allocation, we additionally allocate a bounce buffer for GPU
and CPU encryption. This is accomplished by hooking into GPU allocator
functions. We use these bounce buffers as source and destination addresses
for the encryption operations. They contain garbled data, and their purpose
is solely to account for encryption overhead. We store them in a hashmap
and retrieve their pointers upon transfer calls to and from the device, as well
as kernel launches.

Limitations. There are several limitations in this prototype implementation.
For instance, the transfer and launch of encrypted CUDA kernels are not
modeled. We argue that these costs can be disregarded since the kernels are
small in size and only transferred once as part of the set-up routine. We refer
to Volos et al. [85] to demonstrate the feasibility of using an encryption kernel
to launch other (encrypted) kernels on the GPU. Additionally, initial device
configurations, such as resource management parameters, are not encrypted
with the laid-out approach.

Lack of Encryption Accelerators. AArch64 has support for AES encryption
instructions [9]. However, there is only limited support for them available on
the FVP. Arm provides a proprietary Crypto plugin that enables Armv8.0
Cryptographic Extension on the FVP [15], but the plugin is only available for
paying customers. Furthermore, there is currently no support for Scalable
Vector Extensions in a realm VM [19]. The escape primitive presented in
Section 3.2 offers a possible way to escape to the x86 host and utilize x86
instructions to accelerate encryption. Nevertheless, this approach makes a
comparison between Arm and x86 instructions challenging because of their
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fundamental differences in architecture and instruction set. Based on these
limitations, we have no choice but to utilize pure software encryption within
the realm VM.

3.8 Driver Compatibility Layer

An important aspect in promoting our approach is compatibility with existing
device drives. Bear in mind that our FVP version6 does not have access to real
PCI devices. It includes a PCIe subsystem as part of its BasePlatformPCIRevC
hardware component, which incorporates an SMMUv3, an AHCI controller,
and two PCI devices [8]. While the FVP does include two PCI block devices,
they are solely dummy devices with limited functionality.

Apart from other debug options, we are able to configure the size of the
different base address registers of the block devices. We further manage to
supply a file image which is then announced as a block device on Linux in
Non-Secure World. There are no GPU or FPGA accelerators available on the
FVP, and the available peripherals on the PCI bus are not backed by ”real”
devices on the x86 host. The PCI subsystem on the FVP aims to provide
a limited implementation of the PCIe standard to demonstrate interactions
with the aforementioned peripheral stubs [8].

Taking this into consideration, the devices on the FVP are only of limited use:
Even if we introduce them to a realm VM (refer to Section 3.9 on how to),
we can not properly use them as part of an FPGA or GPU kernel driver to
interact with a device. In our implementation, we do not interact with these
devices because we use the escape primitive to escape to the x86 host. The
central issue that requires attention is precisely where we want to escape to
the x86 host in the call stack.

Implementation. A prototype compatibility layer has one primary goal: To
delegate realm VM memory to protected Non-Secure memory, which then
becomes accessible to PCI devices but not the hypervisor. Delegated memory
includes direct memory access (DMA) and memory-mapped I/O.

DMA. The most portable way to do DMA in the Linux kernel is to employ
the generic DMA layer7. With traditional DMA, data is transferred in a
contiguous block of memory which can become inefficient when dealing
with fragmented memory. For instance, kmalloc, which allocates contiguous
kernel memory, is typically not used for objects larger than a page. While the
maximal allocation limit depends on the hardware, we had issues allocating
more than eight pages of contiguous memory. Among the ways to solve this

6FVP Base RevC-2xAEMvA
7DMA API as part of linux/dma-mapping.h
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allocation issue is to use fragmented memory or the contiguous memory
allocator (CMA). For fragmented memory, the kernel provides scatter-gather
lists. These lists allow us to perform DMA requests on buffers that are
scattered throughout physical memory.

We integrate the compatibility layer into the scatter-gather APIs of the generic
DMA layer, but the approach is not limited to scatter-gather lists. We use
Linux kprobes [54] to intercept calls to dma map sg attrs, where the device
driver informs the kernel of the scattered pages, which in turn translates
these addresses to bus addresses to make them accessible to the device. The
compatibility layer performs a secure monitor call (SMC) to the RMM to
delegate the scattered pages to protected Non-Secure memory.

MMAP. For memory-mapped I/O, we hook into remap pfn range, which
is used to map kernel memory (page frame numbers) to userspace (virtual
addresses). The page frame number typically points to CPU-addressable
device memory. Based on the address range definitions for memory-mapped
devices in the device tree, we can check if an intercepted request belongs to
devise memory or other kernel activities. In the former case, we assign it to
protected Non-Secure memory. This assignment can either be done eagerly
during boot or lazily upon the first request.

3.9 Introducing a PCI Device to the realm VM

Recall that we established in Section 3.8 that the FVP has only limited PCI
device support and lacks a real GPU or an FPGA. In this section, we discuss
where in the call stack we aim to transition to the x86 host. We present four
different approaches with increasing complexity. The first approach does not
model any PCI device interactions at all, and the last approach assigns one
of the FVP’s stub PCI devices exclusively to the realm world. Bear in mind
that in all of these cases, we still have to transition to the x86 host to interact
with the real accelerator.

Approach 1: No Device Since the FVP solely includes a limited implementa-
tion of the PCIe standard, we refrain from making a dummy PCI device
available for a device driver in the realm VM. Thus, in this approach,
the FPGA and GPU drivers do not bind to any PCI device, and all
PCI-specific driver code is removed. This approach requires the least
effort to implement.

Approach 2: Virtio Device Kvmtool includes support for virtio (virtualized
I/O) devices. Virtio is a standard for communication and data trans-
fer between a hypervisor and a guest VM. In contrast to full device
virtualization, which uses traps for all I/O operations, virtio device
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drivers are aware of their paravirtualized devices and can more di-
rectly communicate with the hypervisor, i.e., with fewer traps to the
hypervisor. While we refer to the virtio documentation [72, 61] for
more details, the protocol is divided into three parts: frontend drivers
(device drivers within the guest VM), backend drivers (callbacks in the
hypervisor), and a transport layer (data structures and ring buffers). In
this approach, we implement a new backend in kvmtool and bind it
to the virtio device in the realm device driver (frontend). While this
approach models some PCI device interaction in the realm VM, the
transport buffers have to remain in Non-Secure memory. They can not
easily be delegated to realm memory because the hypervisor still has
to implement the virtio device backend.

Approach 3: VFIO Device The Virtual Function I/O (VFIO) subsystem of
the Linux kernel [60] allows a userspace application to directly access
devices, turning a userspace VM Manager such as kvmtool into a
userspace driver for a device, or put differently, allowing a KVM guest
to become a non-privileged userspace driver. This is accomplished
by binding a proxy driver such as vfio-pci to a device which in
turn exposes the PCI configuration space of that device to userspace8.
Kvmtool can memory map the configuration space into the KVM guest,
trapping at certain places to refrain from giving the guest full access to
the device. This approach is typically referred to as Passthrough Mode in
the setting of KVM. Giving a userspace application full access to a DMA-
capable device comes with security risks. This is why VFIO further
configures the Input-Output Memory Management Unit (IOMMU) to
limit arbitrary device memory accesses. However, this can potentially
interfere with our own IOMMU configurations. We found a patch [87]
that disables IOMMU configurations completely in VFIO.

If we implement this approach, we pass through one of the PCI block
devices of FVP Base RevC-2xAEMvA, giving a guest VM rudimentary
access to a block device on the FVP. Similar to Approach 2, this approach
requires the hypervisor to remain in control over the device because
the vfio-pci device driver must run in kernel space of the Non-Secure
world. Thus, the userspace accessible configuration space can not easily
be delegated to realm memory unless the VFIO subsystem is patched
accordingly for this use-case.

Approach 4: Unrestricted Device Access A major drawback of the previous
approaches 2 and 3 is that the hypervisor remains under the control of
the device and can break the integrity of the realm VM. In approach
4, we thus try to delegate the FVP’s PCI device completely to realm
memory, making it inaccessible to the hypervisor.

8VFIO character device: /dev/vfio/
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The KVM subsystem currently has no support for trusted device assign-
ments to guest VMs. With this approach, we must patch both kvmtool

and the KVM subsystem to enable the hypervisor to delegate one of
its PCI devices to the realm VM. This allows the KVM guest to have
exclusive control over the device. It is important to ensure that the hy-
pervisor’s PCI subsystem can handle scenarios where a connected PCI
device is no longer accessible from the Non-Secure world. For instance,
if the kernel re-probes the PCI bus to detect connected devices, it must
avoid accessing the delegated memory to prevent general protection
faults.

From the perspective of the realm VM, it is necessary to correctly
map the PCI device into the guest VM’s virtualized PCI Bus hierarchy,
enabling the realm to have access to a single physical device. Further
challenges arise in guaranteeing that the KVM guest can not break out
of its sandbox by exploiting its exclusive device access.

Implemented Approach. In approaches 2 and 3, the hypervisor retains
full control over the device. Due to the FVP’s limited implementation of
the PCIe standard, incorporating one of its stub devices into the realm
VM offers limited benefit. Approach 4, although intriguing, requires
substantial engineering effort. It entails patching the KVM hypervisor
for a trusted device assignment. Considering the associated limitations,
we opt for approach 1, where we refrain from introducing a device stub
into the realm VM.

Approach 1 further implies that the device driver in the realm world
does not bind to a PCI device. Hence, there are no interactions with
struct pci dev – Linux’s abstraction to represent a PCI device. To
employ the Driver Compatibility Layer introduced in Section 3.8 without
a device, we manually instantiate a dummy PCI device abstraction,
which we then use in the process to map the scatter-gather list. We
leave hypervisor support for trusted device assignments to future work.

3.10 FVP Performance Instrumentation

In order to assess the performance overhead of different implementations, we
have to measure benchmark executions on the FVP reliably. Arms FVP can
not accurately model cycle counting and is not cycle accurate. Thus we can
not use cycle metrics to compare performance [18]. In the next paragraphs,
we detail ideas on how to instrument the FVP to receive performance metrics.

Timing Annotations. The FVP sacrifices timing accuracy to achieve better
performance. Each instruction takes a single simulator clock cycle with
no further delays [17]. With Timing Annotations, we can change the
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execution time for different instruction classes. Among other options,
we can also change branch misprediction and pipeline stall latencies.
However, as already mentioned, the FVP is not cycle-accurate, and
measurements of timing-sensitive behaviors is discouraged [10].

Model Trace Interface. Fixed Virtual Platform (FVP) includes a tracing sub-
system to track system events. Arm’s FastModelsPortfolio [13] includes
the source code of a GenericTrace plugin, which can trace hardware
events such as executed instructions. Counting instructions gives us
a reliable metric to estimate the performance of different implemen-
tations. Based on the source code of GenericTrace, we implement a
tracing plugin that extracts the following metrics:

• Number of Instructions per core,

• Instruction Distribution (number per instruction type),

• Number of Exception-Mode switches,

• and Number of Security Domain switches.

Event Markers. Additionally, we implement event markers to track events
of special interest. These markers exploit an unused instruction and
register combination to signalize a special event: We move a marker
value M into the zero register XZR to track the occurrence of event M.
This is an unprivileged instruction without side effects and is typically
not used in production code. Our tracer implementation is aware of
this instruction and tracks the event accordingly. We can either count
special events or micro-benchmark code blocks, guarded with start and
stop markers9. In the latter case, we track the number of instructions
passed between start and stop events. Throughout the code base of
TFA, RMM, Linux, and the benchmark code, we track ca. 150 distinct
events. Our fork of the GenericTrace plugin has 3084 LOC with 905
added lines of code.

Instruction Tracing Overhead. Intercepting all executed instructions decreases
the FVP’s performance on the x86 host significantly. To give an example,
executing an encryption benchmark with the tracer can take up to 6
hours for a single iteration. To reduce the tracing overhead, we enable
the tracing subsystem only during the benchmark and not during boot.
This is accomplished with the proprietary ToggleMTIPlugin [14], part
of Arm’s FastModelsPortfolio. The plugin can enable the trace subsystem
by use of a HLT instruction. However, executing HLT in the hypervi-
sor raises an unhandled illegal exception, terminating the executing
benchmark. To fix this, we catch the illegal instruction and increment

9Microbenchmarking with a start and stop markers further require instruction pipeline
serialization
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the instruction pointer accordingly. This is easily feasible on AArch64
because all instructions are 4 bytes in width.
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Chapter 4

Experimental Methodology &
Evaluation

In the following chapter, we compare the performance of our approach with
different baseline implementations, including an encryption-based reference
implementation.

4.1 Experimental Methodology

4.1.1 Benchmarks

GPU Benchmarks. For GPU benchmarking, we choose a set of standard
benchmarks from the Rodinia benchmark suite. Rodinia is designed for
heterogeneous computing infrastructures and supports the CUDA program-
ming model [31]. Unlike the official version, we use version 2.1 from gdev-
bench [57, 58], which rewrites the benchmarking code to support the CUDA
Driver APIs, adding support for the reverse-engineered Gdev CUDA runtime.
Of the total 23 benchmarks in the official Rodina release 3.1 [31], gdev-bench
provides 11 benchmarks, of which we successfully test 9. We exclude two
benchmarks hotspot and lud because they crash already on the unmodified
x86 host system. This is probably because of compatibility issues with our
GPU. Table 4.1 presents the set of benchmarks. They represent a range of
application domains, transfer size, and number of launched kernels. We
systematically increased the problem sizes to find a configuration as large as
possible while still being compatible with the available computing resources
on the GPU.

FPGA Benchmarks. For FPGA benchmarks, we are unable to find a stan-
dard set of benchmarks which is why we hand-code a set of applications
and bitstreams for arithmetic algorithms, including matrix multiplications
and singular value decomposition. These algorithms use implementations
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Benchmark Domain Tasks
Transfer

(MB)

Problem Size

(Points)

nn Dense Linear Algebra 1 1 42764

gaussian Dense Linear Algebra 3148 38 1575 × 1575

needle Dynamic Programming 229 39 1840

pathfinder Dynamic Programming 5 20 50000 × 100

bfs Graph Traversal 2 3 1840

srad v1 Structured Grid 102 2 502 × 458

srad v2 Structured Grid 4 64 2048 × 2048

hotspot Structured Grid 5 3 512 × 512

backprop Unstructured Grid 2 72 262144 × 16 × 1

Table 4.1: Overview of the GPU benchmark suite. The tasks column refers to the number of
launched CUDA kernels.

Benchmark Domain Transfer
Problem Size

(Points)

matmul5 Matrix Multiplication 300 B 5 × 5

matmul10 Matrix Multiplication 1200 B 10 × 10

svd32 Singular Value Decomposition 32 KB 32 × 32

svd64 Singular Value Decomposition 128 KB 64 × 64

Table 4.2: Overview of the FPGA benchmarks.

from Vitis Libraries [91]. The benchmarks for the FPGA are summarized in
Table 4.2.

4.1.2 Hardware Setup and FVP Configuration

FVP. The FVP is based on Fast Models version 11.20.15 (Dec 1, 2022) and is
the official binary version downloadable on Arm’s website [12]. It is version
FVP Base RevC-2xAEMvA, emulating 8 Arm v9.2 cores with support for RME.
We run the normal world hypervisor on the FVP with 2 GB of RAM and
simulated caches disabled. The FVP further has its memory allocations
patched to page-align all emulated DRAM memory on the x86 host process.
This is necessary to facilitate memory-mapped I/O and DMA introduced
in Section 3.3. For benchmarking purposes, we isolate a single emulated core
and prevent the Linux scheduler from submitting workloads to it. This core
is exclusively used for benchmarking applications. For experiments in the
Non-Secure world, we pin the benchmark to the isolated core and prioritize
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its process priority. For experiments in the realm VM, we pin and prioritize
kvmtool to the same core. We run the realm VM with 1 GB of RAM and a
single virtual core. Within the realm VM, we prioritize benchmarks to their
maximum scheduling frequency.

Hardware. We run the FVP on an x86 host machine with a dual-socket
Intel Xeon Gold 6346 CPU with 32 × 2 cores and 378 GB RAM. The host
runs a patched version of Linux 5.10 with our custom page fault handler
framework to escape out of the FVP. Further, we lock the CPU frequency to
3GHz, disable turbo boost, and set the CPU frequency driver to acpi-cpufreq
with performance governor.

Accelerators. The benchmarks interact with an Nvidia GeForce GTX 460
SE GPU, running the Nouveau and DRM stack of Linux Kernel 5.10. The
FPGA device is a Xilinx Virtex Ultrascale+ VCU118.

4.1.3 Implementation Variants

We benchmark the following implementation variants:

Vanilla Non-Secure (ns-vanilla). The first variant consists of an unmodified
software stack for CCA. It includes the original TFA monitor software,
RMM, and hypervisor. We boot the KVM hypervisor with a Linux
kernel 6.2 and a patch set for realm VMs by Arm [19]. The kernel
remains in EL2 Non-Secure World1 and the hypervisor does not spawn
a VM. We execute the test suites in EL0 to showcase the overhead of an
unmodified execution.

Our Solution Non-Secure (ns-devmem). This variant measures the over-
head caused by our modifications (TFA, RMM, kernel, hypervisor)
on Non-Secure world operations. As such, we execute the benchmarks
with our modifications in the Non-Secure world (El2 kernel, EL0 bench-
mark). No VM is spawned in this variant.

Vanilla Realm (realm-vanilla). To identify the overhead caused by running
a CCA-enabled VM, we execute the test suites in this variant in a vanilla
realm VM. The benchmarks operate on an unmodified software stack
and utilize host peripheral passthrough to interact with the accelerators
from within the realm VM.

Our Solution (realm-devmem). This variant encompasses all the necessary
modifications to enable trusted peripheral access. Benchmark code in
this variant runs in a realm VM equipped with our modifications in

1The Linux kernel remains in EL2 if virtualization hardware extensions are present.
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TFA, RMM, kernel, and hypervisor. Device memory access is prop-
erly delegated to protected NS memory, and the SMMU is securely
configured [82].

Encryption Reference (realm-enc). In this last variant, we execute the bench-
marks in a realm VM with an unmodified software stack and software
encryption. We employ the primitives introduced in Section 3.7 to
account for an encryption communication channel between the bench-
mark software and accelerators. By comparing this variant with our
solution, we can assess the overheads caused by encryption.

Two of these variants (ns-devmem and realm-devmem) are derived from the
firmware modifications described in [82]. These adaptations delegate realm
memory to the Non-secure world, granting access to the accelerator while
preventing access from the hypervisor and other realms.
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4.2 Evaluation

In this section, we present the results of our prototype implementation
benchmarked with GPU and FPGA accelerators. We first highlight results
from within the FVP for GPU and FPGA before we analyze their performance
impact on the x86 host. In Appendix A.1, we further list the benchmarking
results in tabular form.

GPU Benchmarks. In Table 4.3 and Figure 4.5 on the forthcoming page 52,
we summarize the speedup across all GPU benchmarks. Our method demon-
strates significant speedup results when compared to a purely software-based
encryption approach, achieving speedups ranging from 425% to 3852%.

benchmark
transfer

size

realm-

vanilla

realm-

devmem

realm-

enc

sradv2 64 MB -10.0% 0.0% 425.1%

sradv1 2 MB -35.8% 0.0% 428.3%

nn 1 MB -17.8% 0.0% 809.6%

gaussian 38 MB -25.2% 0.0% 1286.5%

bfs 3 MB -34.3% 0.0% 1955.4%

hotspot 3 MB -38.1% 0.0% 2037.0%

needle 39 MB -42.7% 0.0% 3287.4%

pathfinder 20 MB -51.6% 0.0% 3537.3%

backprop 72 MB -51.7% 0.0% 3852.3%

Table 4.3: GPU Benchmark slow down comparison relative to our solution, realm-devmem, sorted
by realm-enc variant. Positive values imply that our solution is faster in comparison, i.e. the
comparing variant slows down by the stated percentage compared to our method.

We incur an average slowdown of 34% to native execution (realm-vanilla)
and a speedup of 1 958% to encryption (realm-enc) across all benchmarks.

As already pointed out in Section 3.7, the FVP lacks hardware-accelerated
encryption instruction. The encryption method may not have as much of an
impact when implemented on actual Armv9-compliant hardware. Neverthe-
less, no such hardware is available yet. We refer to our related work [82] to
evaluate the performance on an Armv8-A board with RME-specific instruc-
tions (e.g., GPT-related operations) removed. However, since there is yet to be
an Armv9-compliant processor available, these performance measurements
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Figure 4.1: Number of instructions executed for backprop grouped by Aarch64 exception level.
The top part shows the number of instructions in absolute terms, while the bottom part shows
their relative distribution.

do not reflect the true costs either. Arm’s FVP can not accurately model cycle
counting and is not cycle-accurate. Therefore, we utilize instructions instead
of cycles to showcase performance comparisons (Section 3.10).

Backprop executes the largest data transfer (72 MB) with a speedup of 3 852.3%
compared to the encryption variant and a slowdown of 51.7% when compared
against an unmodified realm VM (realm-vanilla).

To delve deeper into these result characteristics, we aggregate instructions
for backprop and nn in 4.1 and Figure 4.2 into their different exception levels.
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4.2. Evaluation

Figure 4.2: Number of instructions executed for nn grouped by Aarch64 exception level. The
top part shows the number of instructions in absolute terms, while the bottom part shows their
relative distribution. The x-axis depicts the implementation variant, while the y-axis shows the
executed instructions.

These two benchmarks execute the largest (72 MB) and smallest (1 MB) data
transfers. As we observe in the figures, there are additional overheads in
realm EL2 and EL3 for realm-devmem.

For large memory allocations or fragmented memory, we see more context
switches between the realm VM and the RMM and root software. This is
due to a limitation in the current implementation. We currently make no
particular optimizations in the hypervisor, monitor, RMM, and realm VM to
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4. Experimental Methodology & Evaluation

Figure 4.3: GPU Rodinia sradv2 benchmark. Lower is better. The x-axis shows the breakdown
into different stages within the benchmark. A benchmark execution consists of initialization
(init), memory allocation (memalloc), host-to-device transfers (h to d), kernel launches (exec),
device-to-host transfers (d to h), and tear-down work (close). The y-axis refers to the number of
instructions executed (log-scale).

employ contiguous memory allocations (CMA). Fragmented memory leads
to more context switches because the implementations require contiguous
memory when interfacing between different exception levels.

We further observe in the two Figures 4.1 and 4.2 that the encryption variant,
while executing more instructions in total, also spends more instructions in
the RMM (EL2 realm) and the hypervisor (NS EL2). The longer execution
leads to more timer interrupts and context switches between the realm
VM, RMM, and hypervisor. Note the lack of instructions in NS EL1. With
virtualization extensions present, the NS kernel remains in EL2 and runs the
VMM (virtual machine manager) in EL0.

Execution Stages. A benchmark execution comprises several stages, namely
initialization (init), memory allocation (memalloc), transfers from the host to
the device (h to d), launching of kernels (exec), transfers from the device to
the host (d to h), and final tear-down tasks (close). Two of the benchmarks,
sradv2 in Figure 4.3 and gaussian in Figure 4.4, are further broken down into
these different execution stages.

The initialization phase involves loading CUDA kernels from the disk. Since
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4.2. Evaluation

Figure 4.4: GPU Rodinia benchmark gaussian. Lower is better. The x-axis shows the breakdown
into different stages within the benchmark. The y-axis refers to the number of instructions
executed (log-scale).

these files are stored in the NonSecure world and shared with a realm
VM using the 9P directory-sharing protocol, disk I/O leads to additional
time caused by world switches and marshaling copies. However, these
costs are included in all realm VM variants and occur only once during
the initialization phase. In the close phase, all resources allocated during
init and memalloc phase are released. The encryption variant (realm-enc)
allocates additional buffers for CPU and GPU, which are also freed during
the closing stage. This explains why the encryption variant is typically more
resource-demanding in setup allocation and teardown-related tasks.

The large error margin in the realm-vanilla variant (memalloc in Figure 4.3)
is likely due to measuring noise. However, note the log-scale in the y-axis.
The error has no big impact on total instruction accuracy. Other instances
in the execution breakdown where the unmodified baselines (ns-vanilla,
realm-vanilla) perform worse than the other variants can be attributed to
measurement noise. In fact, these inaccuracies are also not visible when
considering the total instruction numbers in Figure 4.5.
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Figure 4.5: Overview Rodinia benchmark results. Lower is better. The y-axis shows the number of instructions executed (log-scale), while the x-axis shows
the Rodina benchmarks, grouped by five different variants: realm-enc is the encryption reference, realm-devmem is our approach, see Section 4.1.3 for an
overview of the variants. The numbers in square brackets on the x-axis refer to the number of samples in each of the five variants.
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x86 Benchmarking. As discussed earlier in this report, mixing between Arm
and x86 instructions is challenging because of their fundamental differences
in architecture and instruction set. This is why the previous results focused
on Arm instructions executed within the FVP. We now elaborate on the
performance implications of the escape mechanism and the different variants
on the x86 host. On x86, we are no longer constrained to counting instructions.
The results shown in the next sections use cycles2 as their metric. We
benchmark x86 host interactions with the device driver. We measure the time
it takes to invoke the device driver from the userspace manager. All syscall
costs are added up and compared across different implementation variants
and benchmarks.

Figure 4.6: x86 GPU ioctl command to transfer memory to the host. The y-axis shows the
number of ticks (log scale), while the x-axis shows the different benchmarks.

We observe that when GPU calls are not explicitly synchronized, they are
generally non-blocking. The time it takes for a command to execute does not
significantly vary across different implementations. All but the encryption
variant execute the same workload on the x86 side. As a result, we do not
come across notably interesting observations in the x86 benchmark results.

Figures 4.6 and 4.7 show GPU execution results in the userspace manager
(log scale). The figures depict the ioctl commands to transfer data to the host
(non-blocking) and allocate memory (blocking). We observe a larger variance

2ticks received from the RDTSCP instruction
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4. Experimental Methodology & Evaluation

Figure 4.7: x86 GPU ioctl command to allocate memory. The y-axis shows the number of ticks
(log scale), while the x-axis shows the different benchmarks.

in these measurements than on the Fixed Virtual Platform (FVP). Noise on
the x86 host may be attributed to the running FVP, whose instruction tracer
causes a large memory footprint or the lack of more samples. Since memalloc
in Figure 4.7 is a blocking call and the encryption variant allocates more
memory, we observe more time spent in the encryption variant. However,
the remaining variants execute the same GPU kernels, and their variance is
attributed to noise.

FPGA Benchmarks. Finally, we illustrate the results of the FPGA bench-
marks in Figure 4.8 on page 55. The measurements agree with our earlier
observations in the GPU benchmarks. The realm VM utilizing a software en-
cryption channel exhibits the highest performance overhead. Notice how we
solely have one encryption sample for the svd32 and svd48 benchmarks. The
pure software encryption approach implemented within a Python interpreter
in the realm VM, with the tracer plugin enabled, required ca. 6 hours for a
single iteration.
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Evaluation

Figure 4.8: Overview FPGA benchmarks. Lower is better. The y-axis shows the number of instructions executed (log-scale), while the x-axis shows the
benchmarks, grouped by five different variants: realm-enc is the encryption reference, realm-devmem is our approach, see Section 4.1.3 for an overview of
the variants. The numbers in square brackets on the x-axis refer to the number of samples in each of the five variants.

55





Chapter 5

Related Work

We start with a survey of trusted execution environments (TEEs) which is
followed by the integration of devices into TEEs. We distinguish between
integrated and external devices. We then discuss existing software support
for Arm CCA and dive into simulation software.

A central idea in recent TEE developments is to use hardware support to
guard confidential information against being accessed by higher-privileged
software. This can be achieved at the level of functions [51, 45, 63], appli-
cations [83, 32, 80, 75], containers [25, 44] or virtual machines [88, 6, 64, 5].
Among these approaches, VM-based isolation has become increasingly popu-
lar. This seems mainly because of their compatibility with existing Infrastruc-
ture as a Service (IaaS) providers. Many cloud vendors, including Microsoft
Azure [67, 3] and Google Cloud [43], have started offering TEE-based services
to end users.

Hardware-based TEEs. One line of work has focused on pushing access
control into the CPU. This is motivated to provide enhanced security by
removing many software components from the trusted computing base
(TCB). Arm TrustZone [7], Intel SGX [51], and AMD SEV [5] are broadly
adopted implementations for Arm and x86. Apart from isolation protection,
they support attestation to verify the authenticity of the underlying platform
and memory encryption mechanisms to ensure confidentiality when data
leaves the CPU before being stored in RAM. Intel TDX [52] and Arm CCA [6]
are upcoming TEE architectures that extend their existing counterparts,
TrustZone [7] and SGX [51], with VM-based isolation. Other works for the
RISC-V architecture include Sanctum [36], Keystone [63], and Penglai [41].

TEE Expansion to Integrated Devices. The emphasis has revolved around
confidential computing without external accelerators for an extended pe-
riod. Only recently has the focus broadened to include confidential devices
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as well. StrongBox [38] demonstrates that a TrustZone-based TEE can be
extended to an integrated GPU. Their approach does not require hardware
changes. Cure [27] presents confidential integrated devices for RISC-V based
on hardware modifications. These approaches demonstrate that integrated
devices connected to the system bus can be guarded by the same bus-level
enforcement that also protects the CPU.

TEE Expansion to External Devices. Graviton [85] demonstrates confiden-
tial device interactions on Nvidia GPUs. Their approach adds TEE primitives
directly to devices and requires hardware modifications. HIX [53] pursues
the same goal but without GPU modifications. These works target the Intel
SGX architecture.

Other works that facilitate confidential peripherals and use hardware modifi-
cations are Nvidia Hopper H100 [2] and Telekine [50] for GPU TEEs, ShEF
for FPGAs [90], and IceClave [55] for in-storage computing on SSDs. Unlike
our method, these approaches employ hardware encryption on the device
and use software-based encryption with data copies to exchange information
confidentially.

Our method creates a protected memory region and guards it by stage 2
translations in RMM and SMMU, and granular protection checks (GPC). To
the best of our knowledge, we are the first to demonstrate this on Arm CCA.
Similar methods have been demonstrated on other platforms by InkTag [48]
Sanctuary [29], and Overshadow [32]. Their isolation primitives rely on
TrustZone address space controller and nested page tables.

Software Support. Arm develops and maintains TFA [11], a monitor firmware
for EL3, an early version of RMM [21], e.g., the realm world hypervisor,
kvmtool [20], and kernel [19] patches for the request of comments (RFCs).
Independently, Samsung develops islet [78], a Rust-based implementation of
the RMM.

Simulation. We modify the proprietary Arm Fixed Virtual Platform (FVP)
to channel DMA and memory-mapped I/O requests to the underlying host
machine. Arm provides a software plugin that bridges the non-functional
Mali GPU on the FVP with GPU facilities on the host machine [16]. A Mali
OpenGL emulator on the host machine can execute the OpenGL requests [22].
This feature is only available for premium customers and specific to the GPU.
GPGPU-Sim [46] and Multi2sim [84] are GPU simulation software providing
a simulation model of contemporary Nvidia GPUs. Their purse software
simulation can negatively impact overall system performance. No-Mali [37]
fakes the register-level interface of a Mali GPU. This allows existing software
to interact with a Mali GPU, even if the device is not functional. The stub
cannot be used for GPGPU programming.
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QEMU [77] supports a PCI passthrough mode using VFIO [60]. However,
it does not support the emulation of Armv9 hardware with GPC (granular
protection check) yet. SimEng [76] and gem5 [42] are other simulation soft-
ware to simulate processors and system components. They target AArch64
and promote collaborative and open development of simulation software.
However, they do not possess the same level of accuracy in microarchitectural
simulation and do not closely resemble the actual hardware as much as Fixed
Virtual Platforms (FVP) do. FVPs, on the other hand, are specifically devel-
oped by Arm to serve as a temporary substitute until the actual hardware
becomes available in silicon.
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Chapter 6

Future Work

In this chapter, we summarize directions for future work. For more avenues
of forthcoming tasks, we direct readers to work in [82].

Host Escape Mechanism. The current implementation of the faulthook
mechanism described in Section 3.2 enables the registration of only one
target application and faulting region simultaneously. Further engineering
improvements in this avenue aim to introduce support for multiple hooks.

Contiguous Memory Allocator We have not implemented optimizations in
realm VM, TFA, RMM, or hypervisor to incorporate Contiguous Memory
Allocations (CMA). Currently, more fragmented memory leads to more
context switches and performance penalties.

Encryption Reference Implementation. The encryption implementation
introduced in Section 3.7 currently only accounts for encryption overhead
without encrypting information when transferring data between the realm
VM and GPU. This is motivated to keep the implementation simpler. Future
work in this direction adds functional encryption support on the GPU and
encrypts the entire communication. We only account for memory transfer
and kernel launches. Volos et al. [85] demonstrate the feasibility of using an
encryption kernel to launch other (encrypted) kernels on the GPU.

Hypervisor Support for Trusted Devices. Due to the FVP’s limited PCIe
simulation, we decided not to model PCI interactions within the realm
VM. In future work, we aim to pursue one of the approaches discussed
in Section 3.9. We aim to allocate a device to the realm VM while ensuring
the continued functionality of the hypervisor. Presently, there is no support
for confidential devices that are inaccessible from the KVM hypervisor. A
patch for KVM [59] is currently under review, which proposes fd-based Guest
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6. Future Work

Private memory. This introduces memory that will not be memory-mapped
into KVM userspace once assigned to a VM. We can employ this technique
in conjunction with our method for trusted device assignments, where we
allocate one of the FVP’s PCIe stubs solely to a realm VM. Additionally, we
can use this method to demonstrate the confidential assignment for integrated
peripherals, such as a Mali GPU.

Benchmarking. In addition to the current benchmark suites, we aim to
showcase more practical scenarios like neural network training from within
the realm VM. We also intend to benchmark applications running on a
more powerful FPGA, or an FPGA in Amazon Web Services shielded with
ShEF [90]. At present, our performance assessment relies on instructions
rather than cycles. Our tracing technique allows us to extract all executed
instructions, enabling us to multiply each instruction type by a cycle metric.
This would allow us to obtain the total execution time.
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Chapter 7

Conclusion

We present the first system that allows CCA-enabled virtual machines to
interact with PCIe- based accelerators securely. As such, we propose using ac-
celerators as first-class abstractions in Arm CCA. In this work, we presented
the design and implementation of a bypass mechanism to connect functional
PCIe-based accelerators to the Fixed Virtual Platform (FVP). This mechanism
allows a realm VM to communicate with an accelerator, although the FVP
does not provide a functional interface to connect to PCIe devices. We discuss
methods for DMA and memory-map device memory between the FVP and
the underlying host system. We apply these mechanisms to two specific
devices on the host machine, namely an FPGA and a GPU. We benchmark
our approach against different implementations with a set of tailored bench-
marks. To accomplish this, we develop a reference implementation based
on encryption techniques. This allows us to compare our method against
the current state of the art when it comes to implementing a secure channel
between the CPU and an external accelerator. The additional memory copies
and encryption overhead in the device and CPU-specific encryption logic lead
to significant overheads. In our evaluations based on the FVP, we incur an
overhead of 34% to native execution and a speedup of 1 958% to encryption.
Although these estimates are based on a simulation because no hardware
with CCA support is yet available, we hope to lay foundations and inspire
upcoming cloud deployments.
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Appendix

A.1 Build System

We built a custom build system to support the iterative development process
required to prototype confidential device access on Arm CCA. The system is
bash and GNU Make-based and uses the package management system of
the Buildroot project [30].

Toolchains. We cross-compile software packages for two architectures,
namely AArch64 and x86 64. This is required because we build software
components for the x86 host and the Fixed Virtual Platform (FVP). The
build system is responsible for downloading and configuring two custom
toolchains. We build environment wrappers that source into a custom build
environment, where the appropriate toolchain is set up and required software
dependencies compiled for the target architecture. This allows us to agree on
a reproducible standard development environment across different machines.

Root File systems. The build system generates two custom AArch64-based
root file systems for both the Non-secure and realm world. These file systems
have all required libraries bundled and essential software packages such as
Python interpreter and its dependencies installed.

We further configure 9P (Plan 9 Filesystem Protocol) directory sharing with
the underlying host system, eliminating the need for rebuilding the root
file systems when software dependencies change. Additionally, the root file
systems have matching kernel headers installed such that we can compile
kernel modules on the x86 host and run them on the FVP.

Fixed Virtual Platform. The build system automates the download process
of the FVP and patches its memory allocation such that we can properly
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bypass the FVP and interact with accelerators on the x86 host. It further
configures the tracer plugins for the benchmarking evaluation.

Kernels and Packages. Furthermore, the build system assembles three
kernel images, one for the x86 host with the faulthook patchset present and
two AArch64 Linux kernels for ARM CCA in the Non-secure and realm
worlds. These kernels can be executed on the FVP (for AArch64 kernels) or
QEMU [77]. We configure Qemu to support kernel debugging. The build
system further handles the download and compilation of TFA [11], RMM [21],
and kvmtool [86], along with their respective library dependencies.

The efforts put into building a system to build the project proved valuable
because they increased developer productivity. Creating a custom build
system became necessary because of all the interdependencies of the required
software packages, different architectures, and development machines.
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The columns realm-vanilla and realm-devmem indicate the relative changes in performance compared to the native execution
of a VM in realm world (realm-vanilla) and our approach (realm-devmem).

Let Ienc and Irealm denote the number of instructions for realm-enc and realm-vanilla. We define the relative overhead Orealm
as follows:

Orealm = (
Ienc

Irealm
− 1) ∗ 100 (A.1)

For example, the encryption overhead Orealm compared to realm-vanilla for sradv1/realm-enc is 722.6%.

Rodinia GPU Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

sradv1 realm-enc 117 424 576 138 648 193 817 722.6 428.3 10

sradv1 realm-devmem 22 224 974 1 077 276 677 011 55.7 0.0 4

sradv1 realm-vanilla 14 275 528 804 817 89 577 0.0 −35.8 2

sradv1 ns-devmem 7 352 006 153 225 61 681 −48.5 −66.9 3

sradv1 ns-vanilla 7 165 230 96 224 91 692 −49.8 −67.8 6

backprop realm-enc 3 261 074 205 532 853 817 793 162 499 8 083.4 3 852.3 11

backprop realm-devmem 82 510 054 347 102 38 633 107.1 0.0 2
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Rodinia GPU Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

backprop realm-vanilla 39 849 798 8 645 962 962 304 0.0 −51.7 2

backprop ns-devmem 42 662 968 364 991 146 929 7.1 −48.3 3

backprop ns-vanilla 41 799 401 123 265 49 621 4.9 −49.3 3

bfs realm-enc 145 388 604 637 965 891 814 3 028.8 1 955.4 10

bfs realm-devmem 7 073 495 1 261 776 792 960 52.2 0.0 4

bfs realm-vanilla 4 646 741 3 388 669 377 162 0.0 −34.3 2

bfs ns-devmem 3 083 850 92 119 37 083 −33.6 −56.4 3

bfs ns-vanilla 2 866 154 14 965 14 260 −38.3 −59.5 6

nn realm-enc 24 168 435 149 018 208 312 1 007.2 809.6 10

nn realm-devmem 2 656 929 130 634 156 257 21.7 0.0 8

nn realm-vanilla 2 182 906 251 665 28 011 0.0 −17.8 2

nn ns-devmem 770 451 2 494 1 004 −64.7 −71.0 3

nn ns-vanilla 749 733 14 886 14 185 −65.7 −71.8 6
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Rodinia GPU Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

gaussian realm-enc 2 357 798 745 13 810 532 19 305 793 1 753.3 1 286.5 10

gaussian realm-devmem 170 052 566 773 655 86 109 33.7 0.0 2

gaussian realm-vanilla 127 222 798 5 728 129 637 547 0.0 −25.2 2

gaussian ns-devmem 126 657 935 1 084 676 436 641 −0.4 −25.5 3

gaussian ns-vanilla 125 546 261 2 122 090 854 256 −1.3 −26.2 3

sradv2 realm-enc 3 557 216 840 582 057 781 866 403 484 483.6 425.1 11

sradv2 realm-devmem 677 404 683 0 0 11.1 0.0 1

sradv2 realm-vanilla 609 553 048 3 713 344 413 299 0.0 −10.0 2

sradv2 ns-devmem 557 809 394 23 676 634 2 635 234 −8.5 −17.7 2

sradv2 ns-vanilla 556 740 108 5 972 570 2 404 283 −8.7 −17.8 3

needle realm-enc 1 820 657 850 299 065 049 445 163 709 5 810.9 3 287.4 11

needle realm-devmem 53 748 540 4 093 081 455 564 74.5 0.0 2

needle realm-vanilla 30 801 491 4 910 961 546 595 0.0 −42.7 2
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Rodinia GPU Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

needle ns-devmem 31 036 507 1 751 010 704 876 0.8 −42.3 3

needle ns-vanilla 30 929 870 2 057 644 828 313 0.4 −42.5 3

hotspot realm-enc 134 838 446 1 539 241 2 151 710 3 351.2 2 037.0 10

hotspot realm-devmem 6 309 582 398 757 250 598 61.5 0.0 4

hotspot realm-vanilla 3 906 984 564 994 62 884 0.0 −38.1 2

hotspot ns-devmem 3 338 251 299 517 120 572 −14.6 −47.1 3

hotspot ns-vanilla 2 985 402 199 508 190 110 −23.6 −52.7 6

pathfinder realm-enc 877 382 026 144 112 454 214 513 982 7 408.7 3 537.3 11

pathfinder realm-devmem 24 121 606 1 194 339 132 931 106.4 0.0 2

pathfinder realm-vanilla 11 684 918 1 536 072 170 966 0.0 −51.6 2

pathfinder ns-devmem 11 333 223 125 869 101 371 −3.0 −53.0 5

pathfinder ns-vanilla 11 089 268 108 860 43 822 −5.1 −54.0 3

Table A.1: Benchmarking Data for Rodinia Benchmarks.
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A.3 Benchmarking Data for FPGA

The columns realm-vanilla and realm-devmem indicate the relative changes in performance compared to the native execution
of a VM in realm world (realm-vanilla) and our approach (realm-devmem).

FPGA Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

svd32 realm-enc 8 135 782 290 0 0 234 390.9 232 523.9 1

svd32 realm-devmem 3 497 398 35 862 42 896 0.8 0.0 8

svd32 realm-vanilla 3 469 552 45 999 43 832 0.0 −0.8 6

svd32 ns-devmem 3 171 696 21 909 36 255 −8.6 −9.3 13

svd32 ns-vanilla 3 157 901 13 901 30 538 −9.0 −9.7 21

svd48 realm-enc 18 109 339 032 0 0 307 854.6 311 074.5 1

svd48 realm-devmem 5 819 674 41 157 44 501 −1.0 0.0 7

svd48 realm-vanilla 5 880 522 152 846 96 056 0.0 1.0 4

svd48 ns-devmem 5 248 992 36 388 54 164 −10.7 −9.8 11

svd48 ns-vanilla 5 245 916 15 370 41 902 −10.8 −9.9 31
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FPGA GPU Benchmark Data

Benchmark Variant # Instr. ± CI (0.95) Stdev realm-vanilla (%) realm-devmem (%) #

matmul5 realm-enc 76 067 965 253 094 353 801 10 144.8 9 432.3 10

matmul5 realm-devmem 798 003 2 864 2 729 7.5 0.0 6

matmul5 realm-vanilla 742 505 2 741 4 950 0.0 −7.0 15

matmul5 ns-devmem 701 402 2 247 2 430 −5.5 −12.1 7

matmul5 ns-vanilla 684 816 2 667 5 534 −7.8 −14.2 19

matmul10 realm-enc 219 277 179 1 532 397 1 656 922 26 825.4 25 282.2 7

matmul10 realm-devmem 863 902 4 385 4 741 6.1 0.0 7

matmul10 realm-vanilla 814 388 4 364 6 496 0.0 −5.7 11

matmul10 ns-devmem 760 608 2 400 3 122 −6.6 −12.0 9

matmul10 ns-vanilla 758 225 1 821 3 288 −6.9 −12.2 15

Table A.2: Benchmarking Data for FPGA Benchmarks.
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