
A PHP Implementation Built on
GraalVM

Bachelor Thesis

Andrin Bertschi

Monday 14th September, 2020

Advisors: Prof. Dr. Zhendong Su, Dr. Manuel Rigger

Department of Computer Science, ETH Zürich

Abstract

PHP is a popular, weakly typed, general purpose programming lan-
guage. Originally designed for building dynamic web pages, the lan-
guage has since gained wide adoption in server-side web develop-
ment. In this work, we describe the design and implementation of
graalphp, an experimental compiler and runtime for PHP hosted on
Truffle and GraalVM. GraalVM is a virtual machine that supports exe-
cution of multiple languages, which are implemented as Abstract Syn-
tax Tree (AST) interpreters based on Truffle. GraalVM uses Graal as
its JIT compiler to compile frequently executed code fragments to ma-
chine code. We implement a subset of the PHP language to run syn-
thetic benchmarks by The Computer Language Benchmarks Game. We
compare peak performance of our implementation against PHP 7 as
well as alternative implementations such as HHVM, JPHP and an early
alpha version of PHP 8. Experimental results indicate that our run-
time reaches competitive results with performance gains of up to 859%
compared to PHP 7. These preliminary results suggest that a Truffle-
hosted PHP implementation might be significantly faster than existing
language implementations.

i

Contents

Contents iii

1 Introduction 1
1.1 Contributions and Scope . 2
1.2 Structure of this Document . 2

2 Background 5
2.1 PHP Programming Language 5
2.2 Graal and GraalVM . 6

2.2.1 GraalVM Native Image 7
2.3 Abstract Syntax Trees . 7
2.4 AST Interpreters . 7
2.5 Truffle . 9

3 Design & Implementation 13
3.1 Design Evaluation . 14
3.2 Truffle-hosted Source Interpreter 15

3.2.1 Parsing Source Code . 15
3.2.2 AST Nodes . 16

3.3 Modeling Language Features 17
3.3.1 Data Types . 17
3.3.2 Functions . 19
3.3.3 Scope and Variables . 21
3.3.4 Control Structures . 22
3.3.5 Arrays . 23
3.3.6 Implementing Array Writes 25
3.3.7 Pass-by-Reference . 29

3.4 Remaining Language Features 30

4 Experimental Methodology & Evaluation 33

iii

Contents

4.1 Experimental Methodology . 33
4.1.1 Performance Metrices 33
4.1.2 Synthetic Benchmarks 35
4.1.3 Runtime Implementations 36
4.1.4 Hardware Setup . 37

4.2 Evaluation . 38

5 Related Work 47
5.1 Zend Engine . 47
5.2 Source-to-Source Compilers . 48
5.3 Just-In-Time Compilers . 48
5.4 Truffle and GraalVM . 50

6 Future Work 51

7 Conclusion 53

A Appendix 55
A.1 Implementing a Parser . 55

A.1.1 Evaluation of Parsers . 55
A.1.2 graalphp-parser . 58
A.1.3 Parsing Benchmarks . 60

B Graalphp Source Assets 63

C Evaluation Assets 65
C.1 Benchmark Source Files . 65

C.1.1 Fannkuchredux . 65
C.1.2 Spectralnorm . 69
C.1.3 Binary-Trees . 78

D Acknowledgment 89

Bibliography 91

Curriculum Vitae 100

iv

Chapter 1

Introduction

Dynamically typed programming languages are well regarded choices for
writing websites. Their expressiveness and fast build-compile-run cycle al-
low for rapid prototyping, debugging and testing. Despite their popularity,
dynamical languages impose challenges on a fast language implementation.
Type checking is delayed until runtime because their types might change
during execution. PHP is one of these languages. Its reference implemen-
tation, Zend Engine, implements PHP with a bytecode interpreter without a
dynamic compiler.

In order to accelerate performance of PHP, previous work translated PHP
code to a statically typed language such as C++. Examples of this ap-
proach include phc [1] and HPHPc [2]. Their method relies on ahead-of-
time optimizations of mature existing compilers but is challenged to imple-
ment dynamic features such as eval1, which evaluates source code at run-
time. Another technique to improve performance is dynamic compilation.
HHVM [3, 4] is an example of a dynamic compiler built from ground up
to execute Hack2. During execution, a dynamic compiler gathers profil-
ing feedback and translates frequently executed code fragments to machine
code.

GraalVM is a virtual machine that supports the execution of multiple lan-
guages, which are implemented as Abstract Syntax Tree (AST) interpreters
based on Truffle. Truffle is a language implementation framework. GraalVM
uses Truffle and a dynamic compiler called Graal to automatically derive ag-
gressive compiler optimizations to just-in-time (JIT) compile code fragments.

Truffle-hosted language runtimes for dynamic languages have shown com-
petitive performances [5]. Furthermore, TIOBE and PYPL [6, 7] rate PHP
within the 10 most popular languages and other related rankings show sim-

1Eval: https://www.php.net/manual/en/function.eval.php, archived: url
2Hack is a dialect of PHP: https://hacklang.org/, archived: url

1

https://www.php.net/manual/en/function.eval.php
https://web.archive.org/web/20200825181212/https://www.php.net/manual/en/function.eval.php
https://hacklang.org/
https://web.archive.org/web/20200910094200/https://hacklang.org/

1. Introduction

ilar results [8, 9]. Although PHP is a popular language, no research has
been done on a GraalVM-hosted implementation. Additionally, we believe
that many existing language implementations do not aggressively apply dy-
namic optimizations. This makes PHP still an interesting target for opti-
mizations.

In this thesis, we present graalphp, an experimental compiler for PHP 7+
hosted on Truffle and GraalVM. We use Truffle to model PHP programs
as an AST interpreter which can further be optimized and JIT compiled by
Graal on GraalVM. We highlight the design of important language features
to implement a subset of PHP. These features were dictated by synthetic
benchmarks. In our evaluation, we perform a preliminary performance com-
parison of potential speedups against the most maintained implementations
of PHP. Given that our implementation is not yet fully realized, we hope to
lay foundations for future work towards a feature complete implementation.

1.1 Contributions and Scope

We make following contributions.

• We develop a language implementation for PHP, graalphp, based on
Truffle and GraalVM. We thereby describe key design aspects and pub-
lish our work as open-source software [10].

• We run our language implementation on three benchmarks by the Com-
puter Language Benchmarks Game [11]. We compare peak performance
against PHP 7 and alternative implementations such as HHVM, JPHP,
and PHP 8 Alpha.

• We modularize an existing parser for PHP and provide it as a stan-
dalone parsing library for Java.

Explicit non-goals are completeness with respect to the language specifica-
tion. PHP is an expressive language with a variety of features [12]. Com-
pleteness exceeds the time margin of this Bachelor thesis. Nevertheless, our
preliminary results indicate competitive peak performance. The benchmark
results suggest that a Truffle-hosted implemented for PHP might be signifi-
cantly faster than existing implementations.

1.2 Structure of this Document

In Chapter 2 we present background information on PHP, GraalVM, AST
interpreters and Truffle. In Chapter 3 we elaborate on designing and im-
plementing graalphp. Next, in Chapter 4 we evaluate peak performance of
our language implementation and compare results. We benchmark graalphp

2

1.2. Structure of this Document

against the reference implementation as well as alternative runtimes. Sub-
sequently, Chapter 5 presents related work while Chapter 6 elaborates on
future work. Finally, we conclude our findings in Chapter 7.

3

Chapter 2

Background

In this chapter we clarify important topics to prepare a reader for the docu-
ment. We introduce background information on PHP, Graal, GraalVM, AST
interpreters and Truffle.

2.1 PHP Programming Language

The PHP Hypertext Processor (PHP) is a weakly typed, dynamic program-
ming language. The language was first released in 1995 as an imperative
scripting language for server side web development [13]. The current ver-
sion as of 2020 is PHP 7.4. Modern PHP includes features such as object-
oriented programming, traits, closures, reflection, null coalescing1 and array
destruction2. Only in 2014 was PHP formally defined by a language specifi-
cation, which was derived from the behavior of its reference implementation
Zend Engine [12, 14]. Listing 1 portrays a simple example of a PHP program.

1 <?php

2 function hello($who) {

3 return "Hello " . $who;

4 }

5 echo hello("PHP") . "\n";

Listing 1: Sample PHP code.

Alike many scripting languages such as JavaScript and Python, PHP is dy-
namically typed. In dynamic typing, type checks occur at runtime. The
function hello($who) in Listing 1 does not specify a type and may be called
with a string "PHP" or an integer 1337. Both calls are valid invocations.

1Null coalescing: $value = $input ?? "fallback, input not defined";
2Array destruction: [$a, $b] = get results();

5

2. Background

Advantages of dynamically typed languages include flexibility and fast pro-
totyping. Alternatively, statically typed languages are type checked at com-
pile type. This may improve program structure and can help catching logic
errors earlier in program development [15].

PHP is further a weakly typed language. Opposite to strongly typed, a
weakly typed language allows to mix different types. In PHP, we may add
a string and an integer, i.e. "1336" + 1, and receive an integer. PHP 7 in-
troduced a stricter, opt-in type system which bails out if type mismatches
occur [16]. The type system allows for type declarations in function argu-
ments, return values and class properties, and can be enabled with a com-
piler directive on a file basis. However, implementation of type declarations
is outside of the scope of this thesis.

Previous work implies that dynamic languages are often implemented with
interpreters, e.g. [17, 18, 19, 20]. This is due to the nature of dynamic types.
Type checking must be delayed until types are known which is at runtime.
We will introduce interpreters to a greater extent in Section 2.4.

2.2 Graal and GraalVM

With Java 9, the Java based JVM compiler interface (JVMCI) was introduced
to the Java Platform. JVMCI allows a dynamic compiler written in Java to
be used by the JVM [21]. A dynamic compiler collects profiling data to un-
derstand program execution. It can apply dynamic optimization techniques
to optimize frequently executed code. Compilation techniques are typically
performed at build time, so-called Ahead-of-Time (AOT) or at execution time,
so-called Just-in-Time (JIT).

Dynamic compilers perform JIT compilation. They are often written in low-
level programming languages such as C++. Among many, this is the case
for V8 (JavaScript) [22], HotSpot (Java) [23] and PyPy (Python) [24]. Writing
a JIT compiler in a managed language comes with a number of benefits
including memory management, faster prototyping, portability, and tooling
support [20, 21].

Graal is a dynamic compiler written in Java which leverages these benefits.
It implements the JVMCI interface and can be loaded at runtime similar to
Java Agents. Starting with JDK 10 (Java Development Kit), Graal ships as
part of the OpenJDK distribution as an experimental JIT compiler. Further-
more, Graal is part of GraalVM, a distribution of Java, which uses Graal as
its default JIT compiler [25]. We will use GraalVM as the Java distribution
for graalphp. Graal makes use of speculations to apply aggressive optimiza-
tions. Among many optimizations, it can cut off cold branches from com-
pilation and bail out to its interpreter when assumptions no longer hold.
More detailed information about Graal and its graph based intermediate

6

2.3. Abstract Syntax Trees

representation (IR) can be found in [26, 27]. In Section 2.5, we will sum-
marize some optimization techniques used in conjunction with Truffle to
implement a guest language on GraalVM.

2.2.1 GraalVM Native Image

GraalVM Native image allows AOT compilation of Java code to a standalone
executable. Compared to a conventional Java virtual machine, a native build
has lower memory overhead and faster startup time [28]. We will provide
a native build of our language implementation, graalphp-native, but will re-
fer to further work for optimizations on the native build. A native build
will indicate some of the potential of AOT compilation for a Truffle-hosted
implementation of PHP.

2.3 Abstract Syntax Trees

An Abstract Syntax Tree (AST) is a tree representation of source code. Each
node constitutes a language construct. An AST is abstract in the sense that
syntactic details are omitted and only semantic elements are emphasized.
Figure 2.1 depicts how an assignment $a = 668 ∗ 2 + 1 is translated into an
AST. We will use this example throughout the chapter.

<?php

// 1337
$a = 668 * 2 + 1;

? >

=

$a

1

+

*

668 2

Figure 2.1: Example of a source to AST derivation.

Truffle-hosted languages are implemented as AST’s and interpreted by Truf-
fle before they are partially evaluated and compiled to machine code. In the
next sections, we will introduce AST interpreters and Truffle to a greater
extent.

2.4 AST Interpreters

When implementing a new programming language, an intuitive approach
towards an implementation is the Interpreter Pattern [29]. An AST is derived
from source code and for each operation, literal and variable in the program

7

2. Background

Multiplication

left: Node
right: Node

Number

value: Number

Assign

var: String
right: Node

Addition

left: Node
right: Node

interface
Node

execute(ctx: Context): Value

Figure 2.2: Example of AST interpreter pattern.

an interpreter node is created. The base node typically defines an abstract
contract such as execute(ctx : Context) : Value which all children implement.
To execute the program, the root node is called which then recursively calls
execute on all children in post-order traversal. Continuing the example of
$a = 668 ∗ 2 + 1 , we may build an AST interpreter visualized in Figure 2.2
and instantiated below:

1 // assign 668 * 2 + 1 to variable a

2 assign = Assign("a", Add(Mul(Num(668), Num(2)), Num(1)));

3 assign.execute(ctx: Context);

4 /*

5 Call Graph:

6 Assign.execute()

7 __Add.execute()

8 __Mult.execute()

9 | __Num.execute()

10 | |__Num.execute()

11 |___Num.execute()

12 */

Listing 2: AST interpreter method dispatch.

Note the call graph in Listing 2. In order to get the result value of 1337, we
need to dispatch all execute methods. The interpreter pattern is conceptually
simple to implement. Nevertheless, parsing and tree walking on each run
causes overhead. Most importantly, dispatch on all execute methods cause

8

2.5. Truffle

overhead. Therefore, execution speed is often moderate compared to na-
tive compilation [19]. One approach to decrease overhead is to introduce
an intermediate representation (IR). Instead of parsing $a = 668 ∗ 2 + 1 on
each run we may introduce assembly like instructions with a fixed num-
ber of operands. This IR is called bytecode in Java and opcode in PHP.
Compilation is now two folded. First we compile to the IR, and when ex-
ecuting the program, we interpret the IR. This gives opportunity to apply
initial optimizations ahead-of-time (AOT). As an example, constant fold-
ing will simplify our snippet $a = 668 ∗ 2 + 1 to 1337. Virtual machines
have a multitude of techniques reaching from proof-based optimizations
such as constant folding to flow sensitive rewrites such as dead code elim-
ination [30]. PHP’s reference implementation3 accelerates execution with
opcode caching. Extensions such as APC4 and Opcache5 store AOT com-
piled bytecode in shared memory. This removes the first fold of reading the
script and applying initial optimizations across requests. Despite these ef-
forts, PHP’s reference implementation does not include a dynamic compiler
in its current version6.

uninitialized Object

int

double

Figure 2.3: Truffle node specializations for addition in PHP.

2.5 Truffle

Truffle is a language implementation framework for Graal. It allows us to
implement a new programming language by writing an AST interpreter.
The interpreter executes all children nodes and performs specializations. In
other words, it adds profiling and type information to the executed pro-
gram [32]. In dynamic languages, we often only know at runtime what con-
crete types occur at a given code segment. Based on these concrete types,
a Truffle-hosted AST can rewrite itself and prefer an node implementation
which matches a given type. Graal then automatically derives optimizations
from the interpreter using partial evaluation and profiling feedback [33, 34].
This follows the principle of ”do-not-repeat-yourself” as we model an AST

3In this thesis referred to as Zend Engine or Zend
4APC: https://www.php.net/manual/en/book.apc.php archived: url
5Opcache, list of AOT optimizations: https://www.php.net/manual/en/opcache.

configuration.php, archived: url
6Version 7.4 as of writing this thesis, a dynamic compiler is planned for PHP 8 [31]

9

https://www.php.net/manual/en/book.apc.php
https://web.archive.org/web/20200811073549/https://www.php.net/manual/en/book.apc.php
https://www.php.net/manual/en/opcache.configuration.php
https://www.php.net/manual/en/opcache.configuration.php
https://web.archive.org/web/20200827081440/https://www.php.net/manual/en/opcache.configuration.php

2. Background

interpreter and rely on mature infrastructure of Truffle and Graal to further
optimize the executed program.

Specialization and Partial Evaluation

Specializations address optimization issues found with dynamic typing. As
an example, we may write an addition node as shown in Listing 4 (details
omitted for simplicity). Truffle provides a DSL (Domain Specific Language)
with an annotation processor to generates wrapper classes. For instance, in
Listing 4, we implement the first node specialization as follows:

1 @Specialization(rewriteOn = ArithmeticException.class)

2 protected long add(long left, long right) {

3 return Math.addExact(left, right);

4 }

This specialization assumes that the node children return long datatypes.
The annotation processor generates a state machine with states for all spe-
cialization. In our case, there are four states: Uninitialized, long, double, and
Object. The states form a lattice and transition from an uninitialized vari-
ant, to primitive data types to generic Java Objects in a constant number
of steps (Figure 2.3). The use of primitive datatypes avoids boxing which
reduces overhead, while a generic specialization uses Java Object’s to han-
dle all cases. Graal assumes that node specializations are stable (i.e. node
rewriting has stopped, and all node children are treated as Java final) and
aggressively performs inlining and constant propagation of nodes under the
same tree. This removes the dispatch of the execute methods between nodes
and allows Graal to emit efficient machine code. Profiling feedback from
Truffle ensures that partial evaluation does not explode in code size and
only includes specializations which were used during execution in the in-
terpreter. This is only speculative, however. We speculate that an addition,
for instance, is only performed on long types and not all other types which
addition in PHP also supports. If these assumptions no longer hold, Graal
can replace stack frames of the compiled code, discard the emitted machine
code, and transfer execution back to the AST interpreter, where we gather
new profiling feedback. This process is referred to as deoptimization [32, 34].

The example in Listing 3 emphasizes on the idea of partial evaluation.
Nodes of the AST are considered as final and then inlined which removes
the method dispatch.

1 // 668 * 2 + 1

2 Add(Mul(Num(668), Num(2)), Num(1)).execute(ctx);

3 // 1.

4 Mul(Num(668), Num(2).execute(ctx)) + Num(1).execute(ctx);

10

2.5. Truffle

5 // 2.

6 Num(668).execute(ctx) * Num(2).execute(ctx) + Num(1).execute(ctx);

7 // 3.

8 668 * 2 + 1;

Listing 3: Introduction to partial evaluation. For the sake of example, numbers are
constant values.

1 @NodeInfo(shortName = "+")

2 public abstract class PhpAddNode extends PhpBinaryNode {

3 // children nodes declared here ...

4 @Specialization(rewriteOn = ArithmeticException.class)

5 protected long add(long left, long right) {

6 return Math.addExact(left, right);

7 }

8 @Specialization

9 protected double add(double left, double right) {

10 return left + right;

11 }

12 @Specialization

13 Object executeGeneric(Object left, Object right) {

14 // ...

15 }

16 }

Listing 4: Truffle addition node to add PHP values.

11

Chapter 3

Design & Implementation

In this chapter we highlight the design and implementation of graalphp and
how we modeled important language features. We first establish different
design approaches towards an implementation. Thereby, we introduce an
opcode and a source-based approach to leverage Zend Engine’s existing in-
ternal representation and to parse plain source code. We will then elaborate
on the architecture of our Truffle-hosted AST interpreter. Subsequently, the
main part of this chapter is dedicated to the design of important language
features. These features enable us to perform a peak performance compar-
ison with Zend Engine and alternative runtimes. At the time of writing this
report, our core language runtime reached around 4000 lines of code.

Zend Engine PHP
Source Code

parses

graalphpPHP Opcode
interprets

produces

graalphp

PHP
Source Code

parses

Opcode Approach Source Approach

Figure 3.1: Design evaluation opcode and source approach.

13

3. Design & Implementation

3.1 Design Evaluation

We distinguish between two layers of abstraction when implementing a
GraalVM-hosted compiler for PHP. The first layer integrates into the opcode
format of Zend Engine – PHP’s reference implementation, while the second
layer parses plain source code. For more detail on Zend Engine’s internal
representation, we refer to Related Work in Section 5.1.

Opcode Approach Zend Engine is a bytecode interpreter. There are differ-
ent ways to access Zend Engine’s internal bytecode representation. An
opcode-based method leverages Zend’s existing parsing and optimiza-
tion stack. The VM exposes an extension API to analyze and modify its
internal representation. This is for instance used by parsing accelera-
tors such as APC1 which skips parsing of the same source file. Our first
design suggestion is based on an Zend opcode interpreter for Truffle.
Advantages of this method include reusability of the parsing infras-
tructure. Even for upcoming syntax changes in PHP this approach is
always compatible with the latest source version, supposing no new
opcodes are introduced. Zend’s opcodes are untyped which may im-
pose an overhead on type checking. Furthermore, alike many byte-
code interpreters, Zend represents control flow with implicit jumps.
This requires manual reconstruction of high level control flow in or-
der to effectively leverage Truffle’s optimization stack. Work done by
Mosaner et al. [35] evaluated loop reconstruction and extraction for
on-stack replacement in LLVM bitcode. They managed to partially
reconstruct high-level constructs for a Truffle-based interpreter. An
opcode interpreter approach would therefore follow a similar method.
The illustration in Figure 3.1 on the left side depicts this approach.

Source Approach A source-based interpreter approach parses plain-text
PHP code. It then manually constructs an AST and translates it to
match Truffle’s implementation contracts. This method requires a so-
phisticated parsing library to support PHP’s diverse range of language
concepts. We can either use an existing parser or write a new parser
from scratch. A source-based interpreter is affected by syntactic lan-
guage changes. New versions of PHP are typically released every year
and receive support for a duration of two years [36]. In Appendix A.1,
we will evaluate parsing libraries for PHP. The illustration in Figure 3.1
on the right side depicts this approach.

While a method with an opcode interpreter is less prone towards new lan-
guage features, we believe a source-based interpreter has more potential for
optimizations. This is because we do not lose semantic information and can

1opcode cache: https://www.php.net/manual/en/book.apc.php archived: url

14

https://www.php.net/manual/en/book.apc.php
https://web.archive.org/web/20200811073549/https://www.php.net/manual/en/book.apc.php

3.2. Truffle-hosted Source Interpreter

obtain the source in its original textual representation. Hence, we propose a
design based on a source interpreter.

3.2 Truffle-hosted Source Interpreter

We propose a design based on PHP’s source representation. In Figure 3.2
we visualize the designed architecture.

Our implementation consists of two main components, graalphp-language –
the Truffle language implementation, and graalphp-parser – a PHP source
code parser. Upon executing PHP we parse a source file and create an
abstract syntax tree. We will then execute the AST until no more node
specializations occur. This will yield profiling feedback for Graal to partially
evaluate and compile frequently executed code fragments to machine code.

graalphp-parser
PHP

Source Code

Truffle

graalphp

parses

Graal

graalphp
language

implementation

implementsgraalphp
AST

builds

uses

rewrites

executescompiles

Figure 3.2: Design overview of graalphp.

The next sections are dedicated to how we parse source code and build an
abstract syntax tree. Subsequently, we portray design decisions and imple-
mented language features and conclude with remaining work.

3.2.1 Parsing Source Code

We evaluated existing Java based parsers for PHP but were unsatisfied with
their features and speed. They either did not support PHP 7+, did not

15

3. Design & Implementation

scale well for parsing large source files, did not provide a visitor pattern
for AST traversal, or were tightly integrated into other products and thus
not reusable as a library. We will elaborate on our analysis and contri-
bution to a parser in Appendix A.1. In brief, we forked the Eclipse PDT
Tools [37] and modularized their parser to be usable as a library. Our fork is
published as graalphp-parser, a standalone parsing library with competitive
parsing speeds.

3.2.2 AST Nodes

Having a parsing library with tree traversal in place, we can walk through
the source AST in one take and create PHP nodes for Truffle. While our
class hierarchy is diverse, it can be simplified to the hierarchy visualized
in Figure 3.3. The concepts introduced throughout this chapter are based
on statements, which do not evaluate to a value, and expressions, which
evaluate to a result value. Unlike other programming languages, PHP does
not restrict execution start to a main function but starts executing the first
statement at the top level of a script. We therefore distinguish between two
different call targets2. A target derived from a PHP Global Root Node, which
contains all statements at the top level of a script, and a PHP Function Root
Node, which represents user functions.

Truffle
RootNode

PHP
Global Root Node

PHP
Node

Statement

executeVoid(Frame): void

PHP
Function Root Node

Expression

executeGeneric(Frame): Object

executeLong(Frame): long

executeDouble(Frame): double

executeBoolean(Frame): boolean

executePhpArray(Frame): PhpArray

Figure 3.3: PHP root classes to model statements and expressions.

2A call target represents a tree hierarchy of nodes to call

16

3.3. Modeling Language Features

We see in Figure 3.3 that Statement and Expression are common parent nodes
in our hierarchy. They define an abstract contract executeVoid(Frame):

void and executeGeneric(Frame): Object which all children implement.
The other execute*(Frame) methods are derivations of these generic cases.
They are auxiliary methods and specialize on different return types, for in-
stance long. We will further introduce our typing system in the next section.

3.3 Modeling Language Features

PHP is an expressive language with a variety of features. In order to show
a preliminary performance comparison, we focus on language features im-
posed by our synthetic benchmarks (see Section 4.1.2). We will now give
an overview in Table 3.1 before we advance to design and implementation
decisions of these features.

Language Feature Comment

Data Types int, float, double, array

Functions and Variables function declaration, invocations and variables

Control Flow If/else, while, do-while, for, return, break, continue

Arrays create, read and writes arrays, reference opera-
tor

Auxiliary operations arithmetical operations (i.e. +, −, ∗, /, ++, –
, <<, >>), logical operations (i.e. !, &&, ‖),
relational operations (i.e. >, <, >=, <=, ==,
!=)

Table 3.1: Overview language features.

3.3.1 Data Types

In order to meet functionality imposed by our synthetic benchmark, we
implemented language semantics for int, boolean, float and array [38]. Array’s
are aggregations of the previously mentioned datatypes, including arrays
themselves. In Table 3.2 we summarize their characteristics.

17

3. Design & Implementation

PHP Type Detail Mapping in Java

bool TRUE or FALSE boolean

int at least 4 bytes, signed long

float at least IEEE 754 64-bit double-precision double

array generic container -

Table 3.2: Implemented data types and their mapping to Java data types.

PHP’s language specification defines integers as 4 bytes but leaves an upper
bound as an implementation detail [12, Section 05-types, The Integer Type].
Furthermore, integer must be converted to float on overflow.

In order to reduce rounding issues for integers larger than 4 bytes, we model
integers as 8 bytes Java long. We model overflow with explicit Truffle node
rewrites in all nodes which modify a long value. By giving long specializa-
tions higher priority than double, we can utilize Truffle’s @ImplicitCast and
convert long values to match double specializations.

$a = −263

$a: long

−$a $a = −$a

Negate Node

long
specialization

double
specialization

Node
rewrite

$a: double

Figure 3.4: Overflow of long data type, implicit cast to double.

This concept is illustrated in Figure 3.4. In this example, we assign −263 to
variable $a and negate its value. −263 is the smallest value we can store in
Java long. Negating does overflow the domain of long. While we execute
the operation, we instruct Truffle to rewrite the Negate Node to use a double
specialization instead. We then implicitly convert long to double and con-
tinue negating in the double specialization. The resulting type of $a after
the assignment is a Java double.

While bool and float follow similar approaches, arrays cannot be modeled

18

3.3. Modeling Language Features

with primitive data types. We will elaborate on our array design in a forth-
coming section.

3.3.2 Functions

Recall that we introduced PHP Global Root Node and PHP Function Root Node
as call targets to execute our Truffle AST. PHP’s language specification de-
fines two different kinds of functions. We will now introduce unconditionally
defined functions [12, Section 13-functions, General].

These functions are defined at the top level of a script. Furthermore, func-
tion calls can either be executed before or after their function definition.
This implies that we may not yet know a function definition when reaching
a function call. Our design proposes a dynamic lookup mechanism for func-
tion calls. In contrast to multiple AST traversals, a lazy lookup mechanism
allows future work towards dynamic name binding3. The proposed class
hierarchy is depicted in Figure 3.5.

PHP
Function Root Node

PHP
Undefined Root Node

Truffle
RootNode

Lookup Node

name: String

1

1

Lookup Context

1

Invoke Node

callNode: DirectCallNode
arguments: Object[]

1

PHP Function

name: String
target: RootCallTarget

*

Figure 3.5: High level lazy function lookup mechanism.

When traversing the source AST, we create Invoke Nodes for all function
calls. An Invoke Node contains a Lookup Node which resolves a function
definition by name at runtime. As long as a function implementation
is not available, i.e. we have not parsed its definition, we use a call tar-
get derived from a dummy implementation. Upon parsing the function
body, we update the PHP function with the correct implementation. We
will fail when the dummy implementation derived from PHP Undefined
Root Node is invoked, indicating that an undefined function is called. We

3Dynamic name bindings conditionally define a function at runtime [12, Section 13-
functions, General]

19

3. Design & Implementation

employ Graal’s @CompilationFinal, partialEvaluationConstant() and
transferToInterpreterAndInvalidate() primitives to lookup a function
definition in the interpreter and then assume that their definition does not
change. The lookup therefore only occurs once at a given call site and is re-
moved when compiled to native code [32]. We implement the lookup with
a map.

We can employ a Truffle DirectCallNode for calling the root node of a func-
tion. Graal can then inline DirectCallNodes into call graphs of the parent node
and can emit optimized code [32]. There is no need for a polymorphic in-
line cache4 when calling a function because PHP cannot redefine functions.
Listing 5 shows an excerpt of the invoke implementation.

1 // Excerpt from Invoke Node

2 @Child PhpExprNode lookupNode;

3 @Children PhpExprNode[] arguments;

4 @Child @CompilationFinal DirectCallNode callNode;

5 @ExplodeLoop

6 @Override

7 public Object executeGeneric(VirtualFrame frame) {

8 if (this.callNode == null) { // lazy lookup

9 PhpFunction fun = lookupNode.executePhpFunction(frame);

10 CompilerDirectives.transferToInterpreterAndInvalidate();

11 this.callNode = DirectCallNode.create(fun.getCallTarget()); // 1

12 }

13 // resolve arguments

14 CompilerAsserts.partialEvaluationConstant(arguments.length);

15 Object[] vals = new Object[arguments.length];

16 for (int i = 0; i < arguments.length; i++) {

17 vals[i] = arguments[i].executeGeneric(frame); // 2

18 }

19 // call function

20 return this.callNode.call(vals);

21 }

22 }

Listing 5: Excerpt from Invoke Node. The DirectCallNode is assumed to be final.
This removes the cost of the lookup once we lazily loaded the function implemen-
tation.

At 1 we transfer back to the interpreter because we change a field which we
assumed to be final. This is the initial look-up cost. The use of @ExplodeLoop

4Polymorphic Inline Cache: Cache at the call site of a method invocation to speed up the
lookup of the implementation.

20

3.3. Modeling Language Features

and partialEvaluationConstant allow us to unroll the loop in 2 which
removes the branch overhead of the loop. Function redefinition is not pos-
sible so we know that the number of invoke arguments is constant during
execution.

3.3.3 Scope and Variables

The concept of scope in a programming language defines the range of visi-
bility from where a variable can be accessed. The only scoping mechanisms
available in PHP are Function Scope and Global Scope [12, Section 04-basic-
concepts, Scope]. A variable defined within a function is only visible in that
function, so called Function Scope, while variables defined at the top level of
a script are in Global Scope.

The example in Listing 6 emphasizes on the concept of scoping. Variable $a
is in Global Scope and not reachable within foo(). Additionally, there is no
concept of scoping within blocks as other C-like languages may support5.
The lack of Block Scope causes variable $b to be visible in the entire function
from the moment it was first assigned.

1 <?php

2 $a = 1337;

3 foo();

4 function foo() {

5 echo $a; // error, variable 'a' not defined

6 if(true) {

7 $b = 42;

8 }

9 echo $b; // valid, echo 42;

10 }

Listing 6: PHP’s function scope.

We model the limited range of PHP’s Function Scope with virtual frames pro-
vided by Truffle. A Truffle frame is conceptually similar to a stack frame and
models an activation record of a function call. Frames store local variables
and function arguments and receive type specializations. In the terminology
of Truffle, we distinguish between virtual- and materialized frames. A virtual
frame cannot be stored as a reference in a Java field and can be eliminated
by Graal using escape analysis. Frames store variables internally in an array
which is eliminated by connecting reads of a variable with their correspond-
ing writes. Graal inlines execute*(Frame) methods under the same root
and can emit efficient code for local variables [32]. The limited scope of
PHP’s Function Scope makes virtual frames a good fit.

5cf. block scope or lexical scope in other programming languages

21

3. Design & Implementation

3.3.4 Control Structures

We implemented control flow semantics for selections and iteration. This
includes if/else, do-while, for, while, break, return, continue. We now portray one
example, the Ternary-Operator and highlight key concepts in implementing
control flow. Other features follow similar ideas.

Ternary Operator

The ternary operator is a short-hand construct for an if-else block. Instead
of writing if-else, one may use the ternary expression shown below, where
$result is assigned 1 if $a equals 1337.

1 <?php

2 $result = ($a == 1337) ? 1 : 2;

Listing 7: Ternary operator.

The use of the ternary operator in PHP can lead to confusion because most
languages implement it with right-associativity. However, in PHP it is left-
associative. We illustrate the issue in Listing 8. $result will contain the
value 4 and not 2.

1 <?php

2 $result = 1 ? 2 : 3 ? 4 : 5;

3 // result: 4

4 $left = (1 ? 2 : 3) ? 4 : 5;

5 // left: 4;

6 $right = 1 ? 2 : (3 ? 4 : 5);

7 // right: 2;

Listing 8: Nested ternary operator.

With PHP 7.4, the use of nested ternary operations without explicit brackets
is deprecated and will be dropped in PHP 8. However, the operator is only
rarely used under these circumstances [39]. Based on these reasons, our
implementation bails out to enforce explicit brackets.

Due to dynamic typing, an expression in a condition can return a different
type than boolean. Hence, we need to convert it to a boolean to select a
branch. The specification states decision tables to convert values to true and
false [12, Section 08-conversions, Converting to Boolean type]. In general,
numeric values such as 0 and 0.0 are treated as false while other values are
true. This implies that -1 for instance is considered as true, like any other
non-zero number. For type conversions in conditions we propose Conversion
Nodes. In Figure 3.6, a Convert2Boolean acts as a proxy and will specialize

22

3.3. Modeling Language Features

TernaryNode

cond: Expression
ifSeg: Expression
elseSeg: Expression Convert2Boolean

Node

PHP
Expression

uses

Figure 3.6: Overview ternary operator node.

on a type, bool, long, double, PhpArray, based on program behavior. We then
convert values explicitly to boolean. Listing 9 portrays some of these type
specializations.

1 @Specialization

2 boolean doBoolean(boolean val) { return val; }

3 @Specialization

4 boolean doLong(long val) { return val != 0; }

5 @Specialization

6 boolean doDouble(double val) { return val != 0.0; }

7 // ...

Listing 9: Excerpt from Convert2Boolean node.

For control flow optimizations, we employ Truffle’s ConditionProfile and
BranchProfile primitives to count the number of times conditions and
branches are taken. Graal can then speculate on an outcome and exclude
infrequently taken branches from JIT compilation.

3.3.5 Arrays

Arrays in PHP are universal data structures. They represent traditional in-
teger indexed arrays, but can dynamically grow and generalize to support
dictionary like features. Arrays can either contain integer or string indices,
which may be negative or even discontinuous [12, Section 12-arrays, Gen-
eral]. Marr et al. [40] did a comprehensive analysis of collection designs
in the wild. They identified six different collection types; sequences, sets,
maps, stacks, queues, and composed collections. While this grouping is self-
explanatory, with composed collections they refer to nested collections such
as 2D arrays. According to this distinction, arrays in PHP are a facades for
all six collection types. For instance, the use of runtime functions such as
array shift and array pop allow arrays to be treated as stacks and queues.

Whereas a facade allows for universal use and hides implementation details,

23

3. Design & Implementation

it imposes challenges on an efficient implementation. Our array implemen-
tation exploits the common use case and allows for generalizations in case
usage assumptions no longer hold. This follows the idea surrounding Truf-
fle’s specializations. In Figure 3.7 we illustrate our proposed design. To ful-
fill the semantic requirements imposed by our benchmarks, we implement
a long[] and Object[] backend. Former implementation exploits Java’s
primitive long datatype and can store primitive integers without boxing,
while the latter stores all other data types. This allows them to be sequences.
Several other backends follow similar design ideas but are outside the scope
of this work. The idea of self adapting storage representations is also con-
templated by others. Bolz et al. for instance analyzed the implementation of
different storage strategies for collections in the PyPy virtual machine [41].

Object[]
Backend

long[]
Backend

Backend

PhpArray

capacity: int

backend: Object

uses

Figure 3.7: Concept of self adapting array backend implementations.

We introduce a new data type, PhpArray, which contains a capacity and a
backend. The backend stores the array implementation which we change
at runtime based on usage behavior. We model modifications on PhpArrays

with Truffle Libraries and explicitly dispatch on the type of PhpArray#backend.
This allows us to build a polymorphic dispatch mechanism with support for
caching and profiling. With @CachedLibrary, we can cache a library and use
it in Truffle node specializations. In terms of terminology, Truffle libraries
are similar to Java interfaces where library messages correspond to interface
methods. We can model a set of messages we want to support in our array
implementation and then specialize on an implementation based on data
types we observe at runtime [42]. We will walk through an example in the
next section.

In Figure 3.8 we depict a simple use case. Our array initially assumes a
long[] backend. While this suffices our implementation, we may add addi-
tional backends and introduce a Placeholder backend which does not assume
a type. In Figure 3.8 we first create an array $a = array(), add an inte-
ger $a[0] = 1, and later on add a float. Upon insertion of the float value
the assumptions no longer hold and we must generalize to an implemen-
tation which satisfies all values. This involves creating a new array and

24

3.3. Modeling Language Features

copying array entries. Type generalizations only occur in a constant num-
ber of times. Additionally, we allocate backends with an initial size and
dynamically grow them if storage capacity is exceeded. By doubling the ar-
ray size upon reaching full capacity, array writes have a constant amortized
time complexity. Read operations read from the under-laying array backend
and are constant as well. Furthermore, the use of the PHP builtin function
array fill allows us to create arrays with a given initial size. In this case,
arrays no longer dynamically grow to fulfill the requested capacity.

Having only two backends may lead to inefficient runtime behavior. For
instance, at some point a map like data structure may be a better fit, in par-
ticular if arrays are only filled sparsely. As previously stated, more backends
are outside the scope of this thesis.

$a = array() $a[0] = 1; $a[2] = 10.0;

long[] backend Object[] backend

capacity : 10

content : {}
capacity : 10

content : {1, 10.0}

execution time

Figure 3.8: Example for array specialization based on usage.

3.3.6 Implementing Array Writes

Recall that arrays in PHP are dynamic and untyped. If we write outside the
allocated array capacity we must extend the array. Furthermore, we must
generalize to a new backend if an unsupported type is inserted.

In the next sections we will walk through the implementation of our arrays
using Truffle libraries and aim to identify some of the implementation chal-
lenges. Subsequently, the AST node to write arrays is shown at the end in
Listing 13.

When writing array entries, we distinguish between four cases.

1. Write an array entry in-bounds with the same type

2. Write an array entry in-bounds with type mismatch

3. Write an array entry out-of-bounds with the same type

4. Write an array entry out-of-bounds with type mismatch

25

3. Design & Implementation

Cases 2 and 4 require type generalizations because we write into a backend
which cannot host the new value. We will portray case 4, however, other
cases will follow similar ideas. To write out-of-bounds with type mismatch
we will:

a. allocate a new backend with larger capacity,

b. copy all existing elements,

c. write the new array element, and finally,

d. expose array write functionality with an AST node.

a. Allocate a new Array Backend

We expose a new library message GeneralizeForValue which selects a com-
patible backend based on a given type. The message implementation for
long[] is portrayed in Listing 10. We will either select a long[] allocator
for a long 1 or a Object[] allocator for any other type 2 .

1 @ExportMessage

2 static class GeneralizeForValue {

3 @Specialization

4 protected static Allocator

5 generalizeForValue(long[] receiver, long newValue) { /* 1 */

6 return LongAllocator.INSTANCE;

7 }

8 @Specialization

9 protected static Allocator

10 generalizeForValue(long[] receiver,Object newValue) { /* 2 */

11 return ObjectAllocator.INSTANCE;

12 }

13 }

Listing 10: Array library message GeneralizeForValue.

With @ExportMessage we instruct Truffle’s annotation processor to generate
a new implementation in the array library. An allocator is responsible to
create new backends. We can test whether a given value can be stored in the
array and create new backends with a given capacity. Figure 3.9 depicts the
allocator design.

b. Copy existing Array Elements

Having an allocator in place, we now migrate array entries from the old
backend. A library message CopyContents will write all entries into a new

26

3.3. Modeling Language Features

LongAllocator ObjectAllocator

Allocator

allocateArray(capacity: int): Object
acceptsValue(val: Object): boolean

Figure 3.9: Allocator to create new PHP array backends.

backend. Note the use of Truffle’s @CachedLibrary in Listing 11. We do not
know the internal representation of the destination backend and delegate
the write to the array library of destination. This decouples writing to
arrays from their internal storage representation 1 .

1 @ExportMessage

2 static class CopyContents {

3 @Specialization(limit = ArrayLibrary.SPECIALIZATION_LIMIT)

4 protected static void copyContents(

5 long[] receiver,

6 Object destination,

7 int length,

8 @CachedLibrary("destination") ArrayLibrary destinationLibrary) {

9 for (int i = 0; i < length; i++) {

10 destinationLibrary.write(destination, i, receiver[i]); // 1

11 }

12 }

13 }

Listing 11: Library message CopyContents for long[].

c. Insert new Array Element

Having copied all entries to a new backend, we can now finally write the
new entry. The library message Write in Listing 12 implements the write on
the long[] backend.

1 @ExportMessage

2 static class Write {

3 @Specialization

4 protected static void write(long[] store, int index, long value) {

5 store[index] = value;

6 }

27

3. Design & Implementation

7 }

Listing 12: Library message Write for long[].

d. Expose Write Functionality with AST nodes

With the design in place to write to backends, we now model an AST node
to write out-of-bounds with type-mismatch. Note the three steps a , b , c
in Listing 13 which we previously introduced.

1 @NodeChild(value = "phpArray")

2 @NodeChild(value = "index")

3 @NodeChild(value = "value")

4 public abstract class ArrayWriteNode extends PhpExprNode {

5 // Node to write array[index] = value

6 public abstract Object executeWrite(

7 PhpArray array, long index, Object value);

8 // write to array out-of-bounds and with type mismatch

9 @Specialization(

10 guards = {

11 "!library.acceptsValue(array.getBackend(), value)"

12 ,"isOutOfBounds(array, index)"

13 },

14 limit = LIMIT)

15 protected Object writeOutOfBoundsTypeMismatch (

16 PhpArray array,

17 long index,

18 Object value,

19 @CachedLibrary("array.getBackend()") ArrayLibrary library,

20 @CachedLibrary(limit = LIMIT) ArrayLibrary libraryNewBackend) {

21 final int newCapacity = getNewCapacity(array, index); // doubles capacity

22 final Object oldBackend = array.getBackend();

23 // a Allocate a new backend

24 final Object newBackend = library

25 .generalizeForValue(array.getBackend(), value)

26 .allocate(newCapacity);

27 // b Copy existing Elements

28 library.copyContents(oldBackend, newBackend, array.getCapacity());

29 array.setBackend(newBackend);

30 array.setCapacity(newCapacity);

31 // c Insert new Element

32 libraryNewBackend.write(array.getBackend(), convertToInt(index), value);

33 return value;

28

3.3. Modeling Language Features

34 }

35 protected static boolean isOutOfBounds(PhpArray array, long index) {

36 return array.getCapacity() <= index;

37 }

38 }

Listing 13: Excerpt from array write node, write-out-of-bounds with type mis-
match.

3.3.7 Pass-by-Reference

Arrays are by default copied by-value and target to runtime optimization
to avoid unnecessary memory copies [12, Section 04-basic-concepts, De-
ferred Array Copying]. In one of our synthetic benchmarks we allocate
deeply nested array entries (Section 4.1.2). In order to demonstrate the per-
formance of our implementation, we provide two source versions of these
benchmarks. One version is the original and the other version uses explicit
pass-by-reference behavior.

PHP supports explicit pass-by-reference semantics with the reference oper-
ator (&). The operator is defined at the call site, return type and parameter
declaration. In Listing 14, line 9 enforces an array copy of $tree, while line
7 and 8 do not6.

1 <?php

2 function &createTree($depth) {

3 $a = array();

4 // ...

5 return $a;

6 }

7 $tree = &createTree(1337); // copy-by-reference

8 $sameTree = &$tree; // copy-by-reference

9 $copyTree = $tree; // copy-by-value

Listing 14: Copy-by-reference at call site and return value.

We implement the reference operator for arrays. An approach for other data
types is discussed in Future Work. Our proposed design is based on a proxy
node which either employs by-value or by-reference behavior. Depending
on the declared semantics, the proxy will enforce a deep copy or simply
forward the reference of the array. For creating a deep copy we will allocate
a new array backend and recursively copy all children. This is needed to
correctly account for nested arrays. Our implementation proposes a new

6Supposing no optimizations are employed to copy-on-write or other techniques

29

3. Design & Implementation

library message (see Section 3.3.6 for an introduction to libraries) which
recursively calls itself if an array entry contains another array.

3.4 Remaining Language Features

In the last sections we presented highlights in designing PHP on GraalVM.
As we have already established, the main aim of our work is to perform a
preliminary performance comparison of a GraalVM-hosted implementation.
The selected features were therefore imposed by our benchmarks. PHP is
an expressive programming language with a variety of different features.
While we refer to Chapter 6 for general thoughts on future work, we will
now give an overview of important remaining features. For a comprehen-
sive overview we refer to the specification [12]. The snippet in Listing 15
demonstrates some of the implemented language concepts.

Datatypes In our experimental runtime we implemented boolean, integer,
float and array data types. PHP supports ten datatypes including
string, resource and callable [38]. The resource datatype, for instance,
models a reference to an external resources such as a file handle and
database connections. Other datatypes will follow similar ideas as we
have established in this chapter. Challenges will include how to inter-
operate our data types with implementations of third-party code. We
will talk about third-party libraries in Chapter 6.

Variables We implemented a subset of variables supported by PHP. Our
implementation currently supports local variables. While these are the
most used variables, PHP further supports static, and (super) global
variables. We intend to implement these with maternalized Truffle
frames, analogously to our existing local variable implementation.

Opt-In Type system With PHP 7, an optional stricter type system was in-
troduced. Our parser correctly recognizes type declaration but does
not yet propagate type declarations to our runtime. In further work
we intend to implement this feature. On type mismatch, we can bail
out instead of following conversion rules.

Classes A major language feature is support for object oriented program-
ming. Wöss et al. introduced an object storage model for Truffle [43].
The model provides language agnostic tools to implement class hier-
archies and object instantiation. PHP supports single inheritance and
traits. In future work, we intend to evaluate how we can model object-
oriented programming in Truffle.

Arrays Our array implementation demonstrates the potential performance
gains. We implemented sequences. In future work we must implement
map, stack and queue like structures and implement mechanisms to

30

3.4. Remaining Language Features

copy-on-write and pass-by-reference automatically if semantically pos-
sible. These concepts will follow the same ideas with Truffle Libraries
which we introduced in this work.

Reference Operator A major implementation aspect is the reference opera-
tor for primitive data types. Although HHVM7 dropped support for
references on primitive data types [44], it is still a major feature of the
PHP programming language. We intend to investigate how this could
be efficiently implemented. One approach involves boxing referenced
primitive data types into Java objects. For instance, one design sug-
gestion involves modeling referenced integer types in an Integer class
which can be shared and modified by AST nodes.

Namespaces, Exceptions, Generators, Anonymous Classes We believe it is
a matter of investing more engineering efforts to implement these fea-
tures. Namespaces and parsing of multiple files will be an important
feature towards compatibility with existing PHP applications.

1 <?php

2 function Fannkuch($n){

3 $p = $q = $s = array();

4 $sign = 1; $maxflips = $sum = 0; $m = $n-1;

5 for ($i=0; $i<$n; $i++){ $p[$i] = $i; $q[$i] = $i; $s[$i] = $i; }

6 do {

7 // Copy and flip.

8 $q0 = $p[0]; // Cache 0th element.

9 if ($q0 != 0){

10 for($i=1; $i<$n; $i++) $q[$i] = $p[$i]; // Work on a copy.

11 $flips = 1;

12 do {

13 $qq = $q[$q0];

14 if ($qq == 0){ // ... until 0th element is 0.

15 $sum += $sign*$flips;

16 if ($flips > $maxflips) $maxflips = $flips; // New maximum?

17 break;

18 }

19 $q[$q0] = $q0;

20 if ($q0 >= 3){

21 $i = 1; $j = $q0 - 1;

22 do {

23 $t = $q[$i]; $q[$i] = $q[$j]; $q[$j] = $t; $i++; $j--; }

24 while ($i < $j);

25 }

26 $q0 = $qq; $flips++;

27 } while (true);

28 }

29 // Permute.

7Virtual machine to execute Hack, a dialect of PHP

31

3. Design & Implementation

30 if ($sign == 1){

31 // Rotate 0<-1.

32 $t = $p[1]; $p[1] = $p[0]; $p[0] = $t; $sign = -1;

33 } else {

34 // Rotate 0<-1 and 0<-1<-2.

35 $t = $p[1]; $p[1] = $p[2]; $p[2] = $t; $sign = 1;

36 for($i=2; $i<$n; $i++){

37 $sx = $s[$i];

38 if ($sx != 0){ $s[$i] = $sx-1; break; }

39 if ($i == $m){

40 return array($sum,$maxflips); // Out of permutations.

41 }

42 $s[$i] = $i;

43 // Rotate 0<-...<-i+1.

44 $t = $p[0];

45 for($j=0; $j<=$i; $j++){ $p[$j] = $p[$j+1]; } $p[$i+1] = $t;

46 }

47 }

48 } while (true);

49 }

Listing 15: Excerpt from a function in benchmark fannkuchredux to demonstrate
some of the implemented features [45].

32

Chapter 4

Experimental Methodology &
Evaluation

In the following chapter we compare performance of graalphp with other
implementations of PHP. We first introduce terminologies and performance
metrices. We then proceed to outline benchmarks before we present and
discuss the measurement results. These experiments aim to perform a pre-
liminary performance comparison, given that the implementation is not yet
fully realized. Hereby, our goal is to investigate potential speedups.

4.1 Experimental Methodology

4.1.1 Performance Metrices

A program is said to reach peak performance once it is in steady-state. Steady-
state is a state during program execution after the dynamic compiler gath-
ered enough profiling information to translate frequently executed code seg-
ments to machine code. Frequently executed code fragments are also called
hot. Time spent before reaching steady-state is often referred to as warm-up
time [46]. The metric we use to evaluate performance is peak performance.

Benchmarking Java applications is often challenging because a number of
non-deterministic factors may influence performance. Some of these factors
include dynamic compilation, garbage collection, thread scheduling and VM
optimizations. As Georges et al. indicate, being rigorous in the experimental
methodology is crucial because different methodologies may lead to differ-
ent conclusions [47]. Hence, we take care in adding rigor. Apart from visu-
alizing data in plots we will also present timing results to support readers
in drawing their own conclusions.

Collecting Samples We rely on language runtime APIs to obtain timing val-
ues. For PHP this involves calling hrtime(true). A code snippet for a

33

4. Experimental Methodology & Evaluation

single iteration is shown in Listing 16. Georges et al. recommend run-
ning multiple consecutive benchmark iterations within a single VM
execution, as well as running multiple VM executions [47]. We will
follow their method and list total number of iterations and number
of VM executions when presenting timing results. Kalibera et al. es-
tablish different points of repetition as levels of the experiment [48].
According to their distinction, the lowest level is a single iteration of
a benchmark, while the highest level is compilation of VMs and other
binaries. In order to keep execution within a reasonable time margin,
we will measure at a low level and will not recompile virtual machines
and other runtime binaries across benchmark executions.

1 <?php

2 for($i = 0; $i < $N; $i ++) {

3 $start = hrtime(true);

4 $val = doIteration();

5 $timing = hrtime(true) - $start;

6 }

Listing 16: Sampling N timing values in PHP

Aggregating Samples We aggregate samples obtained from the bench-
marks using arithmetic mean. For better interpretability of the results
we further enumerate minimum, maximum, sample standard devia-
tion and confidence interval for the mean.

Determining when steady-state is reached during program execution is
often challenging [46]. Dynamic compilation is typically performed
within the first iterations which is why we manually inspect iterations
to pick a threshold and exclude warm-up samples before aggregating.

The sample mean T̄ and sample standard deviation sn are used as
follows,

T̄ =
1
n
×

n

∑
i=1

ti, (4.1)

sn =

√
1

n− 1
×

n

∑
i=1

(ti − T̄)2, (4.2)

for n samples t1 to tn.

For the confidence interval we chose the significance level α = 0.95
and determine c1 and c2 such that

Pr[c1 ≤ µ ≤ c2] = 1− α, (4.3)

34

4.1. Experimental Methodology

c1 = T̄ − z1−α/2
sn√

n
, (4.4)

c2 = T̄ + z1−α/2
sn√

n
, (4.5)

where µ is the actual mean of the population, and z1−α/2 defined such
that a random variable Z which is Gaussian distributed (µ = 0, σ2 = 1)
follows

Pr[Z ≤ z1−α/2] = 1− α/2. (4.6)

z1−α/2 is obtained from a precomputed table [47].

Put differently, with a significance level of α = 0.95 we know that every
time we repeat the experiment and obtain a new sample mean T̄, in
95% of these cases the real mean1 of the benchmark lies within the
endpoints c1 and c2 calculated from the samples.

The underlying assumptions are that the samples are independent and
come from the same population. In practice, the samples may not be
independent because they may modify heap state, cache entries and
other data structures [47]. To account for this, we remove warm-up
samples from the measurements.

Speedup Large differences in execution time become harder to visualize
when absolute timing measurements are used. We therefore compare
aggregated samples relative to a baseline. The baseline used is the
current version of PHP which we further specify in Section 4.1.3. Im-
plementation A is s times faster than PHP with speedup s defined as

s =
T̄A

T̄PHP
, (4.7)

T̄X is the mean for implementation X. The relative performance gain is
s− 1, or put as an example, a speedup of 1.5 leads to 50% performance
improvements.

Warm-up In addition to speedup of peak performance, we will include box
plots to show warm-up time. These plots will indicate how many
iterations are needed until we reach peak performance.

4.1.2 Synthetic Benchmarks

The implemented features of graalphp were dictated by language features
used in The Computer Language Benchmarks Game [11]. Namely we imple-
mented three of the benchmarks available in PHP: binary-trees, spectralnorm

1cf. population mean in statistics

35

4. Experimental Methodology & Evaluation

and fannkuchredux (presented in Table 4.1). A list of syntactic modifications
can be found in Appendix C.1. Modifications were necessary to keep the
feature set within the scope of this thesis. We believe that our modifications
do not significantly influence the outcome of the experiments because they
only remove syntactic sugar. To state an example, instead of the for each
operator we use the for operator to iterate over an array. Additionally, our
selected benchmarks neither involve file I/O nor do they increase perfor-
mance with threads. The parameter N given in Table 4.1 is dictated by the
Computer Language Benchmarks Game.

Benchmark Language Features Parameters

binary-trees [49] functions, nested arrays, pass-by-
reference/value, integers, unset, loops

N = 21

spectralnorm [50] functions, arrays, loops, floats N = 5500
fannkuchredux [45] functions, arrays, loops, integers N = 12

Table 4.1: Language features and configurations used in benchmarks.

Pass-By-Reference and Pass-By-Value

When presenting results we will provide two source versions of the bench-
marks; one version implements by-value semantics for arrays and the other
version implements by-reference semantics. By-reference explicitly uses the
Reference Operator of PHP (& Operator). Arrays are by default passed by-
value and are target to runtime optimization to avoid unnecessary memory
copies [12, Section 04-basic-concepts, Deferred Array Copying]. We will
provide two source versions to allow graalphp to explicitly pass arrays by-
reference and hence avoids deeply nested array copies. A more sophisti-
cated array implementation may employ Copy-On-Write, Points-to Analysis
and similar techniques to automatically distinguish between these two. We
provide two source versions to show what can be achieved if more engineer-
ing efforts are put in our implementation.

4.1.3 Runtime Implementations

All benchmarks are executed in a Linux container image based on Ubuntu
20.04 (Docker/ Podman). This is motivated to simplify reproducibility and
installation of development and benchmark dependencies. We did not no-
tice an overhead when benchmarking in the container environment.

graalphp/graaphp-native Graalphp runs on GraalVM Community Edition
20.1.0. Additionally we provide graalphp-native, an AOT compilation
of graalphp using GraalVM Native Image [28]. We include a native
build to indicate some of the potential of AOT compilation. However,

36

4.1. Experimental Methodology

no efforts were spent to further optimize the native build. The binaries
are built based on git commit cb59d053633d.

PHP 7.4 We run all benchmarks against the current version of PHP. At the
time of writing this report, this was PHP 7.4.3. Results of PHP 7.4 with
copy-by-value semantics are used as a baseline for speedup diagrams.

PHP 8.0 Alpha A JIT compiler for PHP is scheduled for PHP version 8
which is announced to be available by the end of 20202. We compiled
the latest tagged alpha version (php-8.0.0alpha3) from Github3 and en-
abled the JIT compiler with flags opcache.jit=1235, opcache.

jit_buffer_size=512M.

Hack/HHVM The HipHop Virtual Machine (HHVM) is the runtime en-
vironment for the Hack programming language, a dialect of PHP.
HHVM is developed by Facebook and utilizes a JIT compiler. Some
of Hack’s language feature include dynamic and static typing as well
as generics. HHVM is heavily used by Facebook internally and is
open source software [3]. We run version 4.68.0 (rel) and modified
our benchmarks accordingly. Only small changes were needed which
include adding type annotations and replacing PHP arrays by Hack
vectors.

JPHP JPHP is an alternative implementation of PHP for the JVM. The
project dynamically transforms PHP source code to Java bytecode
which is then executed on the JVM. For bytecode generation the Ob-
jectWeb ASM4 framework is used. JPHP implements a subset of the
PHP standard libraries and provides custom extensions [51]. We use
the latest released version: jppm 0.6.7 which bundles jphp 1.0.3, Open-
JDK 14.

4.1.4 Hardware Setup

We execute benchmarks on a ThinkPad P52 running Manjaro Linux Mini-
mal (Architect) Installation with Linux Kernel 5.7. The hardware features an
Intel® Xeon® E-2176M CPU clocked at 2.7GHz - 4.4GHz and 16GB DDR4
RAM. The device has Hyper-Threading disabled, Turbo Boost disabled, and
CPU frequency driver intel pstate is used with governor performance manu-
ally set at a fixed clock rate of 2.7 GHz. We further restart the device before
running a new benchmark suite5.

2PHP 8 Release Plan https://wiki.php.net/todo/php80, archived: url
3PHP 8: https://github.com/php/php-src/tree/php-8.0.0alpha3, archived: url
4Java bytecode manipulation framework: https://asm.ow2.io/, archived: url
5By benchmark suite we mean the set of all benchmarks

37

https://wiki.php.net/todo/php80
https://web.archive.org/web/20200815173430/https://wiki.php.net/todo/php80
https://github.com/php/php-src/tree/php-8.0.0alpha3
https://web.archive.org/web/20200815173530/https://github.com/php/php-src/tree/php-8.0.0alpha3
https://asm.ow2.io/
https://web.archive.org/web/20200809125544/https://asm.ow2.io/

4. Experimental Methodology & Evaluation

4.2 Evaluation

In this section we present our preliminary results on peak performance of
the selected benchmarks. Figures 4.1, 4.2 and 4.3 show execution times nor-
malized to PHP 7 and Figures 4.4 and 4.5 depict evaluation of warm-up time
for the first iterations. Subsequently, we list absolute timing measurements
in Tables 4.2, 4.3 and 4.4 at the end of the chapter.

We see competitive to significantly faster speedup results of graalphp across
all selected benchmarks. For Fannkuchredux (Figure 4.1) we notice that
graalphp is much faster than all benchmarked implementations. We reach
a speedup of 859% compared to PHP 7. The AOT build of our implemen-
tation – graalphp-native – reaches a speedup of 705%. Note that no arrays
were used in this benchmark which is why we only present the benchmark
without the reference operator.

Both spectralnorm (Figure 4.2) and binary-trees (Figure 4.3) use semantics for
copy-by-value (blue, default) and by-reference (green). In those, graalphp
exceeds PHP 7 in spectralnorm by 652% (copy-by-value) and 655% (copy-by-
reference). For binary-trees we are worse with deeply nested array copies
by -84% (copy-by-value) and exceed all implementations except HHVM in
copy-by-reference with a speedup of 511%.

Copy-by-Reference semantics demonstrates the upper bound in perfor-
mance we can achieve if more engineering efforts are spent in an array
implementation. Techniques such as Copy-On-Write, Points-to, and Escape
Analysis will help to prevent unneeded array copies. This is however, out-
side of the scope of our work. Additionally, we note that other implemen-

Figure 4.1: Speedup fannkuchredux, the x-axis shows speedup relative to PHP 7,
while the y-axis show the implementation of PHP. Larger is better.

38

4.2. Evaluation

Figure 4.2: Speedup spectralnorm relative to PHP 7. Larger is better.

tations apart from graalphp and graalphp-native do not show much difference
between by-value and by-reference behavior. Zend Engine (PHP 7, 8) for
instance handles variables internally with a Copy-On-Write implementation
which is why stating by-reference semantics may restrict compiler optimiza-
tions. For newer versions of Zend Engine it is often discouraged to pass val-
ues by-reference for performance reasons only [52]. HHVM discontinued
support for by-reference semantics in 20196 when dropping source compat-
ibility for PHP. This leaves more optimization opportunities completely up
to their compiler.

6https://hhvm.com/blog/2019/10/01/deprecating-references.html, archived: url

39

https://hhvm.com/blog/2019/10/01/deprecating-references.html
https://web.archive.org/web/20200815173845/https://hhvm.com/blog/2019/10/01/deprecating-references.html

4. Experimental Methodology & Evaluation

Figure 4.3: Speedup binary-trees relative to PHP 7. Larger is better.

Figure 4.4 and 4.5 show evaluation of warm-up time of graalphp and
graalphp-native on the selected benchmarks. We see that execution time sta-
bilizes within the first four iterations without much variance in fannkuchre-
dux and spectralnorm. For binary-trees we see more variance. For the native
build – graalphp-native – we notice that execution time increases after the first
iterations in binary-trees. This benchmark stress tests garbage collection by
allocating deeply nested arrays. The increase does not happen in graalphp
which leads us to question whether it is due to lack of optimizations on na-
tive build settings, or different constraints imposed by SubstrateVM7, which
hosts the ahead-of-time compiled Java code. As we stated previously, opti-
mizations on the native build are outside of the scope of this work.

Synthetic benchmarks are often employed as optimization targets for com-
pilers [46], as well as other GraalVM/Truffle related research (e.g [53, 54,
55, 5]). On one hand, they are well studied in various programming lan-
guages. On the other hand, micro-benchmarks may not represent typical
real-world program behavior. On the contrary, hardware and compilers may
specifically be optimized to execute synthetic benchmarks and their perfor-
mance may be worse in more realistic scenarios [46, 56]. For PHP, typical

7VM for ahead-of-time compiled Java code built with GraalVM Native image [28]

40

4.2. Evaluation

real-world program behavior includes server-side page generation which
is subject to future work. Nonetheless, our results provide promising initial
in-sighs into a GraalVM-hosted implementation of PHP. We significantly ex-
ceed all implementations in fannkuchredux and spectralnorm. For binary-trees,
we show competitive results provided we can employ by-reference seman-
tics and avoid deeply nested array copies. If we copy all arrays by-value we
perform worse than PHP 7 in that benchmark. For comprehensive evalua-
tion results, additional engineering efforts must be spent in supporting more
language and runtime features. We will discuss this further in Chapter 6.

41

4. Experimental Methodology & Evaluation

Figure 4.4: Evaluation warm-up time of graalphp. The x-axis shows the iteration
of consecutive benchmark executions, while the y-axis shows the execution time of
the benchmark. The N in the legend of the right y-axis refers to the number of VM
invocations to run the consecutive benchmarks. Blue are copy-by-value, green are
copy-by-reference versions of the benchmarks. Lower is better.42

4.2. Evaluation

Figure 4.5: Evaluation warm-up time of graalphp-native. The x-axis shows the iter-
ation of consecutive benchmark executions, while the y-axis shows the execution
time of the benchmark. The N in the legend of the right y-axis refers to the num-
ber of VM invocations to run the consecutive benchmarks. Blue are copy-by-value,
green are copy-by-reference versions of the benchmarks. Lower is better. 43

4.
E

x
p
e
r

i
m

e
n

t
a

l
M

e
t
h

o
d

o
l
o

g
y

&
E

v
a

l
u

a
t
i
o

n

Fannkuchredux Peak Performance

Implementation # Min(s) Mean(s) Max(s) Stdev CI (0.95) E

graalphp 90 58.92 62.34 62.91 1.15 [62.10; 62.58] 10

graalphp-native 90 74.11 74.29 75.86 0.40 [74.20; 74.37] 10

PHP 8 Alpha 20 175.64 183.42 195.22 7.38 [180.19; 186.65] 2

PHP 7 (baseline) 38 596.44 597.96 608.34 3.00 [597.00; 598.91] 4

JPHP 20 815.06 816.17 820.24 1.63 [815.46; 816.89] 2

HHVM 20 1455.64 1456.50 1457.48 0.88 [1456.11; 1456.88] 2

Table 4.2: Measurements for Fannkuchredux benchmark, excluded warm-up iterations: 5, sorted by mean. # refers to the total number of
samples, while E refers to the number of VM executions to obtain these samples. Measurements presented in this table are visualized
in Figure 4.1. E is typically higher for graalphp and graalphp-native because we also added peak performance samples obtained from
benchmarking warm-up time (cf. Figure 4.4, 4.4).

44

4.2.
Evaluation

Spectralnorm Peak Performance

Implementation Type # Min(s) Mean(s) Max(s) Stdev CI (0.95) E

graalphp-native 140 7.03 7.04 7.05 < 0.01 [∼ 7.04; ∼ 7.04] 10

graalphp-native by-ref 140 7.54 7.54 7.55 < 0.01 [∼ 7.54; ∼ 7.54] 10

graalphp by-ref 140 10.07 10.08 10.10 < 0.01 [∼ 10.08; ∼ 10.08] 10

graalphp 140 10.12 10.12 10.13 < 0.01 [∼ 10.12; ∼ 10.12] 10

PHP 8 Alpha 50 40.33 40.38 40.41 0.02 [40.37; 40.38] 2

PHP 8 Alpha by-ref 50 40.84 40.87 40.91 0.02 [40.87; 40.88] 2

PHP 7 (baseline) 75 75.93 76.15 76.58 0.17 [76.11; 76.19] 3

PHP 7 by-ref 75 76.68 76.97 79.26 0.32 [76.89; 77.04] 3

HHVM 50 86.88 87.10 87.33 0.22 [87.04; 87.17] 2

JPHP 50 164.93 167.46 171.98 1.59 [167.02; 167.90] 2

JPHP by-ref 50 171.55 174.64 181.27 2.59 [173.92; 175.36] 2

Table 4.3: Measurements for Spectralnorm benchmark, excluded warm-up iterations: 5, sorted by mean. by-ref use explicit pass by
reference semantics. # refers to the total number of samples, while E refers to the number of VM executions to obtain these samples.
Measurements presented in this table are visualized in Figure 4.2.45

4.
E

x
p
e
r

i
m

e
n

t
a

l
M

e
t
h

o
d

o
l
o

g
y

&
E

v
a

l
u

a
t
i
o

n

Binary-Trees Peak Performance

Implementation Type # Min(s) Mean(s) Max(s) Stdev CI (0.95) E

HHVM 90 11.66 11.83 12.29 0.12 [11.80; 11.85] 2

graalphp by-ref 87 14.52 14.87 15.50 0.30 [14.81; 14.94] 15

graalphp-native by-ref 84 50.26 51.61 54.21 0.77 [51.44; 51.77] 14

PHP 8 Alpha 90 84.55 89.64 92.22 1.98 [89.23; 90.05] 2

PHP 7 (baseline) 117 85.32 90.85 97.27 2.28 [90.44; 91.27] 3

PHP 8 Alpha by-ref 90 107.86 113.00 118.61 2.05 [112.58; 113.42] 2

PHP 7 by-ref 90 106.99 113.01 117.51 2.24 [112.55; 113.48] 2

JPHP 90 124.30 130.75 138.81 3.38 [130.05; 131.45] 2

JPHP by-ref 90 140.11 144.86 156.94 4.67 [143.89; 145.82] 2

graalphp 34 563.48 583.16 599.99 8.59 [580.27; 586.04] 6

graalphp-native 25 1999.98 2011.12 2029.56 7.69 [2008.11; 2014.14] 5

Table 4.4: Measurements for Binary-Trees benchmark, excluded warm-up iterations: 5, sorted by mean. by-ref use explicit pass by
reference semantics. # refers to the total number of samples, while E refers to the number of VM executions to obtain these samples.
Measurements presented in this table are visualized in Figure 4.3.

46

Chapter 5

Related Work

There has been numerous work by researchers and practitioners to exam-
ine and improve the performance of PHP. In this chapter, we first introduce
Zend Engine, PHP’s reference implementation and then distinguish between
existing approaches to Source-to-Source translate and to Just-in-Time com-
pile PHP programs. Subsequently, we identify other work on Truffle and
GraalVM.

5.1 Zend Engine

The Zend Engine is PHP’s reference implementation. It is a virtual machine
written in C and runs on PHP opcodes, an intermediate representation (IR)
similar to Java bytecode. Zend Engine is modeled as a bytecode interpreter.
Upon parsing a script, the VM translates PHP code into its internal repre-
sentation. To speed up this process, extensions such as APC1 exist which act
as a cache for parsing. Zend Engine stores function and class method defini-
tions in zend op array2. This struct contains a pointer to the bytecode instruc-
tions zend op3 and various auxiliary data such as lookup tables for variables.
zend op represents a three-operand bytecode instruction with two arguments
and a result operand. There are ca. 200 different bytecode instructions4.
Zhao et al. [57] identified that Zend Engine may suffer performance over-
head due to the mostly untyped nature of its bytecode. For dynamic typing,
Zend Engine keeps values in generic boxed operands (zend op), and performs
type checking for access. A technical write-up on internal improvements on

1opcode cache: https://www.php.net/manual/en/book.apc.php, archived: url
2zend op array: https://github.com/php/php-src/blob/master/Zend/zend_

compile.h#L413, archived: url
3zend op: https://github.com/php/php-src/blob/master/Zend/zend_compile.h#

L142, archived: url
4list of opcodes: https://github.com/php/php-src/blob/master/Zend/zend_vm_

opcodes.h, archived: url

47

https://www.php.net/manual/en/book.apc.php
https://web.archive.org/web/20200811073549/https://www.php.net/manual/en/book.apc.php
https://github.com/php/php-src/blob/master/Zend/zend_compile.h#L413
https://github.com/php/php-src/blob/master/Zend/zend_compile.h#L413
https://web.archive.org/web/20200816190256/https://github.com/php/php-src/blob/master/Zend/zend_compile.h
https://github.com/php/php-src/blob/master/Zend/zend_compile.h#L142
https://github.com/php/php-src/blob/master/Zend/zend_compile.h#L142
https://web.archive.org/web/20200816174816/https://github.com/php/php-src/blob/a359635cb1a4df8b5137a506c88c4cb102acac0e/Zend/zend_compile.h#L142
https://github.com/php/php-src/blob/master/Zend/zend_vm_opcodes.h
https://github.com/php/php-src/blob/master/Zend/zend_vm_opcodes.h
https://web.archive.org/web/20200816185808/https://github.com/php/php-src/blob/master/Zend/zend_vm_opcodes.h

5. Related Work

PHP 7 and its internal representation is curated in [58, 59, 60]. There is cur-
rently no JIT compiler in Zend Engine for PHP 7+. However, a JIT is planned
for PHP 8. We use Zend Engine as baseline for evaluating graalphp because it
is the reference implementation of PHP.

5.2 Source-to-Source Compilers

A popular approach to implement a compiler is to rely on mature existing
compiler technology by translating the program to the source language of
the existing compiler. This approach saves engineering efforts and is favor-
able if language concepts can easily be modeled in the target language [19].
In literature, source-to-source translation is also known as transpiling or
transcompiling [61]. Transcompilers exist for a variety of programming lan-
guages including cfront [62], the original compiler for C++ (C++ to C), as
well as TypeScript [63], a statically typed superset of JavaScript (TypeScript to
JavaScript). For PHP, work on transpiling includes HPHPc [2] (PHP to C++),
phc [1] (PHP to C), and Roadsend PHP [64] (PHP to Bigloo Scheme). These
projects are transpiled to a statically typed target language and benefit from
ahead-of-time optimizations of their respective compilers but are challenged
to model dynamic runtime behavior such as eval or dynamic function defi-
nitions [65]. This issue is avoided by dropping support for certain language
features or to implement an interpreter and transfer execution to it for these
cases [65, 66]. The last release of phc dates back to 20095, work on HPHPc
was discontinued in favor of HHVM (see next section), and according to
their project site, development on Roadsend PHP has stopped6.

As discussed by Romer et al. [19], issues surrounding ahead-of-time com-
pilations of dynamic languages are prevented with interpreters and just-
in-time compilation. We will introduce work on JIT compilers for PHP in
the next section. Our approach partially follows methods of Source-to-Source
compilers, by translating PHP code to a Truffle AST and then relying on
mature infrastructure of Truffle and Graal. However, in contrast to the pre-
sented Source-to-Source approaches, we can utilize an interpreter and a JIT
compiler to execute the program and thus, avoid issues surrounding direct
AOT compilation.

5.3 Just-In-Time Compilers

Related work on JIT compilers for PHP includes P9 [67] which adapted an
existing JIT to run PHP. They used TR JIT, a dynamic compiler from an IBM
JVM implementation. Quercus [68] and JPHP [51] follow a similar approach

5phc: http://freshmeat.sourceforge.net/projects/phccompiler, archived: url
6Roadsend PHP: http://roadsend.com/, archived: url

48

http://freshmeat.sourceforge.net/projects/phccompiler
https://web.archive.org/web/20200815154714/http://freshmeat.sourceforge.net/projects/phccompiler
http://roadsend.com/
https://web.archive.org/web/20200815153813/http://roadsend.com/

5.3. Just-In-Time Compilers

by transforming PHP to Java bytecode. Their approach then relies on ex-
isting JVM implementations for further optimizations. These approaches
are similar to Source-to-Source approaches but perform optimizations at run-
time with a dynamic compiler. While such an approach saves engineering
resources, the target runtime and its IR may not be optimized to run dy-
namically typed languages. This issue is referred to as ”The Repurposed JIT
Compiler Phenomenon” by Castanos et al. in [69]. To address the need
to run dynamic languages on the JVM, the JSR 292 expert group intro-
duced invokedynamic, a new bytecode instruction [70]. Nevertheless, Bolz
et al. analyzed that hand-crafted JIT compilers still excel with better perfor-
mance [71].

HHVM [3, 4] is a continuation of efforts put in HPHPc. It is a virtual machine
with a state-of-the-art JIT compiler designed for Hack, a dialect of PHP.
Some of its key optimization techniques include ”type specialization, side
exits, profile-guided optimizations, and region-based compilations”. We re-
fer to [72] for a more elaborate analysis on HHVM. HHVM dropped source
compatibility for PHP after version v3.30 (end of 2019) [44].

HappyJIT and HippyVM [73, 74] are RPython/PyPy based PHP implementa-
tions. Similarly to Truffle, the PyPy project provides language agnostic tools
to write a guest language as an interpreter in RPython, a dialect of Python.
In contrast to Truffle and Graal, PyPy uses a meta-tracing compiler. For an
elaborate analysis of tracing and partial evaluation, we refer to the works
of Marr et. al in [75]. The PyPy project shows promising results. However,
results in [73] were published in 2011 and we are unaware of PHP related
follow-up work. Additionally, open source work on HippyVM seems to have
stalled as the last commit dates back to 2015.

Methods we introduced in this section differ from Source-to-Source ap-
proaches by implementing or adapting a dynamic compiler. As previously
explained, an approach which leverages dynamic compilation avoids chal-
lenges to model dynamic runtime behavior, such as eval or dynamic typing,
because these optimization are now performed at runtime. Unlike other
approaches, our work evaluates performance gains of a Truffle and Graal
hosted implementation. Similarly to HappyJIT and HippyVM [73, 74], we
model a guest language as an interpreter and use automatically derived op-
timizations to JIT compile the executed program. However, our approach is
based on Graal and uses partial evaluation while PyPy uses tracing [75].

To the best of our knowledge, the most maintained and competitive run-
times for PHP are Zend Engine, HHVM, and JPHP. We benchmark these
against our work on graalphp. More information to these implementations is
presented in Section 4.1.3.

49

5. Related Work

5.4 Truffle and GraalVM

Research on other language runtimes hosted on Truffle and GraalVM shows
promising directions. Graal.JS (JavaScript) [76], TruffleRuby (Ruby) [77], and
GraalPython (Python) [78] are examples of actively maintained dynamic lan-
guage implementations hosted on Truffle. Their respective runtimes show
competitive results compared to their reference implementations. We re-
fer to the works of Gaikwad et al. for an elaborate performance analysis of
languages hosted on Truffle [5].

50

Chapter 6

Future Work

In the limited scope of this thesis we implemented a subset of the language
specification. Namely, we implemented language features imposed by three
synthetic benchmarks. As of writing this report, the core-runtime of our
language implementation reached c.a. 4000 LoC. We already discussed re-
maining language features in Section 3.4.

Graalphp-native

We provided a native build of graalphp but did not further optimize it. We
believe that there is still much potential and interesting follow-up work in
a native-build and integration with other native runtime libraries. In one of
the benchmarks (Spectralnorm) graalphp-native exceeded peak performance
of graalphp and all other implementations. PHP has a diverse ecosystem of
runtime libraries reaching from image manipulations to database drivers.
For user adoption these libraries must be integrated.

Runtime Libraries

An important aspect of a programming language is its runtime libraries.
PHP has a variety of functions and third-party libraries written in C. We
believe an approach that allows reusability of existing libraries is the most
viable and future-proof attempt for adoption. GraalVM provides a native
function interfaces to call native libraries. Future work on runtime libraries
includes how existing native code can efficiently be invoked and how our
implemented data types can be seamlessly shared with other libraries.

Web Server Integration

In order to evaluate performance of graalphp on real-world work load, we
must implement server-side page generation features. We must evaluate

51

6. Future Work

whether integration of our compiler into an existing web server such as
Apache1 is useful or whether we should build a new server or adapt existing
JVM based solutions.

Truffle Language Interoperability

Truffle supports an interoperability feature to allow Truffle-hosted imple-
mentations to call into each other without overhead [79]. We intend to eval-
uate how interoperability can be integrated into our implementation.

1https://httpd.apache.org/, archived: url

52

https://httpd.apache.org/
https://web.archive.org/web/20200824185847/https://httpd.apache.org/

Chapter 7

Conclusion

In this work we presented graalphp, the first experimental compiler and run-
time for PHP hosted on Truffle and Graal. With our implemented feature set,
we ran a selected number of synthetic benchmarks by The Computer Language
Benchmarks Game [11]. Our experimental evaluation aimed to perform a pre-
liminary performance comparison, given that the implementation is not yet
fully realized. We implemented language features such as arrays, control-
flow constructs, functions and datatypes. Our goal was to investigate poten-
tial performance gains of a Truffle-hosted implementation. The results have
compared peak performance of graalphp with Zend Engine, PHP’s reference
implementation, as well as HHVM, JPHP and an early version of PHP 8.
Our preliminary results suggest that a Truffle-hosted PHP implementation
might be significantly faster than existing well-maintained language imple-
mentations. Graalphp reached a peak performance of up to 859% compared
to Zend Engine and showed competitive to significantly higher performance
gains compared to other implementations. While our preliminary results are
promising, more engineering and research efforts must be invested into our
implementation. For instance, for a more realistic work-load we aim to im-
plement server-facing website rendering. Additionally, while an argument
regarding code size is challenged to be representative in capturing com-
plexity of a project, the core runtime of competitive projects are significantly
larger. Zend Engine1 for instance is over 120k lines of C code, while HHVM2

exceeds 450k lines of cpp code. Our core runtime3 is currently ca. 4000 lines
of code and exceeds peak performance of other implementations on selected
benchmarks. While our implementation is not fully realized, we developed
it as open-source software [10] which was motivated to lay foundations for
future work towards a feature complete and open implementation.

1Zend Engine: php-src/zend [80]
2HHVM: hphp/runtime [81]
3Graalphp: graalphp/graalphp-language [10]

53

Appendix A

Appendix

A.1 Implementing a Parser

In this section we document the decisions which led to graalphp-parser,
our fork of the Eclipse PHP Development Tools (PDT). We compare existing
parser for PHP source code and benchmark their performance.

A.1.1 Evaluation of Parsers

Migrating to another parser to a later extent in project development leads to
unnecessary engineering efforts. Instantiating of Truffle nodes is dependent
on how parsing results are curated. Hence, it is in our interest to carefully
choose a parser. When opting for a parser for graalphp we prioritized cri-
terions shown below;

1. Written in Java

2. Compatibility to the latest version of PHP

3. API to traverse parsing results

4. Parsing speed

5. Code quality and size of code base

There are a number of parsing project of PHP source code for the JVM.
We compare ANTRL, JPHP and the Eclipse PHP Development Tools, some
of the most mature and popular projects we found. All parsers support a
recent version of PHP and are actively maintained.

55

A. Appendix

ANTRL Parser

ANTLR, ANother Tool for Language Recognition, is a popular LL(*)1 parser
written in Java. It can generate lexers and parsers and supports a variety of
source grammars including PHP [82]. Table A.1 summarizes opportunities
and obstacles when adapting ANTRL.

Pros Cons

Support for PHP 7.4

Grammar based parser

Visitor pattern for AST traversal

BSD 3-clause license

Active community, 8k stars on
Github

Slow Parsing speed (see bench-
marks)

Table A.1: Features of ANTRL parser

JPHP

JPHP is an alternative implementation of the PHP programming language
on the JVM. It compiles PHP source code to Java bytecode. It implements a
subset of the PHP runtime libraries and features own extensions [51]. The
project includes a hand written parser. Features of JPHP are summarized in
Table A.2.

Eclipse PHP Development Tools

The Eclipse PHP Development Tools is a distribution of the Eclipse IDE
which supports development of PHP-based web applications. The project
contains a Java CUP [83] and JFlex [84] based LALR2 parser for PHP source
code [37]. Features of the Eclipse PDT are listed in Table A.3.

Comparison

While ANTRL requires the least efforts to integrate in graalphp, it scales
poorly for parsing large source files. The hand written parser used by the
JPHP project is the fastest but is tightly integrated in the JPHP compiler.
Furthermore, the lack of an AST traversal API makes it impractical to be

1Left-to-right, Leftmost derivation
2Look-Ahead Left-to-right, Rightmost derivation in reverse

56

A.1. Implementing a Parser

Pros Cons

Support for PHP 7.1+

Fast parsing speed (see bench-
marks)

Apache license 2.0

Active community, 1.6k Stars on
Github

No visitor pattern to traverse pars-
ing results

No clear separation between
parser and compiler

Hand written parsing logic (To-
ken POJOs: 5000 LOC, Tokenizer:
1000 LOC, Parser: 4000 LOC)

Dependencies to non parsing de-
pendent code (org.ow2.asm pack-
age)

Table A.2: Features of JPHP parser

Pros Cons

Support for PHP 7.4

Grammar based parser

AST visitor for tree transforma-
tions

POJOs for all AST nodes

Eclipse Public License 2.0

Tightly integrated in the Eclipse
IDE with many dependencies

Table A.3: Features of Eclipse PHP Development Tools

easily reused. Being written from scratch, adaptations to upcoming versions
of PHP require more engineering efforts than a grammar based parser. The
parser implemented by the Eclipse PHP Development Tools is deeply inte-
grated in the Eclipse IDE, requiring additional efforts to modularize. The
Eclipse parser provides POJOs3 for AST nodes and traversal APIs to extract
parsing results. As we see in benchmark section, it scales well with large
source files. Extracting the parser used by the Eclipse project will presum-
ably take less efforts than writing a new parser, or improving another parser.
Based on these findings we provide a fork of the Eclipse PHP Development
Tools. We remove all runtime libraries, rewrite the build system and provide
a standalone JAR.

3POJO: Plain old Java object

57

A. Appendix

A.1.2 graalphp-parser

Graalphp-parser is a fork of the Eclipse PHP Development Tools [37]. We
removed all Eclipse IDE dependencies and provide it as a standalone parser
supporting PHP 7.4. Our contributions entail the following work.

1. Remove dependencies to the Eclipse Dynamic Languages Toolkit and
other parts of the Eclipse PHP Development Tools.

2. Rewrite the the build system to integrate Ant4 artifacts into a Maven5

release.

3. Provide the parser as a standalone Maven artifact.

4. Add better error handling and bail-out behavior.

5. Add test suites to compare parsing results of graalphp-parser with
parsing results of Eclipse PHP Development Tools.

Graalphp-parser is released under the Eclipse Public License v2.0 and avail-
able as a Maven artifact. An example of parsing source code with graalphp-
parser can be found in Listing 17.

4https://ant.apache.org/, archived: url
5https://maven.apache.org/, archived: url

58

https://ant.apache.org/
https://web.archive.org/web/20200815174936/https://ant.apache.org/
https://maven.apache.org/
https://web.archive.org/web/20200815175100/https://maven.apache.org/

A.1. Implementing a Parser

1 ASTParser parser = ASTParser.newParser(PHPVersion.PHP7_4);

2 String msg = "I had a date() with PHP and I had to mktime() for it.";

3 String code = "<?php $a = '" + msg + "'; echo $a; ?>";

4 parser.setSource(code.toCharArray());

5 parser.addErrorListener(new ConsoleErrorListener()); // to stdout

6 parser.addErrorListener(new BailoutErrorListener()); // to exception

7 Program pgm = parser.parsePhpProgram();

1 <!-- pgm.toString() -->

2 <Program start='0' length='37'>
3 <Statements>

4 <ExpressionStatement start='6' length='19'>
5 <Assignment start='6' length='18' operator='='>
6 <Variable start='6' length='2' isDollared='true'>
7 <Identifier start='7' length='1' name='a'/>
8 </Variable>

9 <Value>

10 <Scalar start='11' length='13'
11 type='string'
12 value=''I had a date() with PHP \

13 and had to mktime() for it.''/>
14 </Value>

15 </Assignment>

16 </ExpressionStatement>

17 <EchoStatement start='26' length='8'>
18 <Variable start='31' length='2' isDollared='true'>
19 <Identifier start='32' length='1' name='a'/>
20 </Variable>

21 </EchoStatement>

22 <EmptyStatement start='35' length='2'/>
23 </Statements>

24 <Comments>

25 </Comments>

26 </Program>

Listing 17: graalphp-parser API

59

A. Appendix

A.1.3 Parsing Benchmarks

We benchmark parsing time of ANTLR, JPHP, and graalphp-parser for var-
ious sized source files. Results of these benchmarks were used to select a
parser for graalphp. Benchmarks are performed with the Java Microbench-
mark Harness6 on JDK 11.0.7. The same hardware is used as declared in
Section 4.1.4. We executed five warm-up and five measurement iterations of
10 seconds each. An overview of results is depicted in Figure A.1 and the
tables A.4, A.5 and A.6 list measurements.

We notice that graalphp-parser is ca. 2x slower than the hand written parser
in JPHP. For a file size of 8000 lines, this is a slow down of 25ms. We further
see that ANTRL is c.a. up to two orders of magnitude slower than the fastest
parser. This is likely due to its LL(*) look-ahead implementation. Repeated
parsing of the same source file can further be optimized by a cache. The
cache looks up a previously parsed result such that parsing of the same file
can be avoided. This is not further discussed, however.

large medium small

0

1,000

2,000

3,000

23 9 148 23 1

2,
21

1

62
7

15

ti
m

e
(m

s)

JPHP graalphp-parser ANTRL

Figure A.1: Peak performance of parsing benchmark. Smaller is better. We parsed
a large (8000 LOC), medium sized (2400 LOC) and small (50 LOC) file. The y-axis
is peak execution time and the x-axis is the file size.

6https://openjdk.java.net/projects/code-tools/jmh/

60

https://openjdk.java.net/projects/code-tools/jmh/

A.1. Implementing a Parser

Parser Avg (ms) Min (ms) Max (ms) Stdev

JPHP 22.619 22.581 22.713 0.053

Graalphp-parser 47.622 47.483 47.758 0.103

ANTRL 2210.715 2199.06 2225.774 11.264

Table A.4: Parsing large files (phpoffice/Xls.php), 7948 lines of code

Parser Avg (ms) Min (ms) Max (ms) Stdev

JPHP 8.821 8.814 8.827 0.006

Graalphp-parser 23.47 23.457 23.495 0.014

ANTRL 626.705 625.922 627.083 0.462

Table A.5: Parsing medium sized files (symfony/RequestTest.php), 2413 lines of
code

Parser Avg (ms) Min (ms) Max (ms) Stdev

JPHP 0.652 0.644 0.659 0.006

Graalphp-parser 0.647 0.646 0.647 0.001

ANTRL 15.378 15.337 15.476 0.056

Table A.6: Parsing small files (benchmarkgame/fannkuchredux.php-1.php), 51
lines of code

61

Appendix B

Graalphp Source Assets

To reduce the size of this document we do not attach source assets. They
can be downloaded at the following hyperlinks.

When developing graalphp during this thesis, we followed a vertical inte-
gration approach: features were written in git feature branches and were
vertically integrated, from modifications in graalphp-parser, to graaphp to test
suites. Continuous integration1 ensured a stable master branch. The main
repository currently contains more than 450 commits.

graalphp The main repository is hosted at [10]. It includes all graalphp run-
time artifacts including graalphp-parser, Graal component and graalphp-
native installer, as well as a Dockerfile and benchmark scripts.

graalphp-parser-benchmarks Evaluation scripts to benchmark graalphp-
parser are hosted here2.

eclipse-pdt-parser-fatjar A fat jar bundle of the Eclipse PDT parser is
hosted here3. We used it to perform end-to-end testing against
graalphp-parser. The fat jar ensures that graalphp-parser did not intro-
duce semantic errors compared to its upstream version.

1https://travis-ci.org/
2https://github.com/abertschi/graalphp-parser-benchmarks
3https://github.com/abertschi/eclipse-pdt-parser-fatjar

63

https://travis-ci.org/
https://github.com/abertschi/graalphp-parser-benchmarks
https://github.com/abertschi/eclipse-pdt-parser-fatjar

Appendix C

Evaluation Assets

In this chapter we list benchmark files. To keep the size of this document
within a reasonable margin we only show benchmark files for PHP and
graalphp and refer to the source distribution for benchmarks on HHVM
and JPHP.

C.1 Benchmark Source Files

C.1.1 Fannkuchredux

appendix/source-assets/fannkuchredux.php-1.php:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy, transliterated from Mike Pall's
Lua program↪→

5 */

6 // modifications to version on benchmarksgame website

7 // remove list() builtin and assign variables explicitly

8 // remove strings from printf and print result values directly

9 // use a fixed N instead of command line argument

10 // introduce warm up and timing

11 function Fannkuch($n){

12 $p = $q = $s = array();

13 $sign = 1; $maxflips = $sum = 0; $m = $n-1;

14 for ($i=0; $i<$n; $i++){ $p[$i] = $i; $q[$i] = $i; $s[$i] =

$i; }↪→

15 do {

65

C. Evaluation Assets

16 // Copy and flip.

17 $q0 = $p[0]; //

Cache 0th element.↪→

18 if ($q0 != 0){

19 for($i=1; $i<$n; $i++) $q[$i] = $p[$i];

// Work on a copy.↪→

20 $flips = 1;

21 do {

22 $qq = $q[$q0];

23 if ($qq == 0){

// ... until 0th element is 0.↪→

24 $sum += $sign*$flips;

25 if ($flips > $maxflips) $maxflips = $flips;

// New maximum?↪→

26 break;

27 }

28 $q[$q0] = $q0;

29 if ($q0 >= 3){

30 $i = 1; $j = $q0 - 1;

31 do { $t = $q[$i]; $q[$i] = $q[$j]; $q[$j] =

$t; $i++; $j--; } while ($i < $j);↪→

32 }

33 $q0 = $qq; $flips++;

34 } while (true);

35 }

36 // Permute.

37 if ($sign == 1){

38 $t = $p[1]; $p[1] = $p[0]; $p[0] = $t; $sign = -1;

// Rotate 0<-1.↪→

39 } else {

40 $t = $p[1]; $p[1] = $p[2]; $p[2] = $t; $sign = 1;

// Rotate 0<-1 and 0<-1<-2.↪→

41 for($i=2; $i<$n; $i++){

42 $sx = $s[$i];

43 if ($sx != 0){ $s[$i] = $sx-1; break; }

44 if ($i == $m) return array($sum,$maxflips);

// Out of permutations.↪→

45 $s[$i] = $i;

46 // Rotate 0<-...<-i+1.

47 $t = $p[0]; for($j=0; $j<=$i; $j++){ $p[$j] =

$p[$j+1]; } $p[$i+1] = $t;↪→

48 }

49 }

50 } while (true);

66

C.1. Benchmark Source Files

51 }

52 $N = 12;

53 $iter = 15;

54 for($i = 0; $i < $iter; $i ++) {

55 $start=hrtime(true);

56 $A = Fannkuch($N);

57 $stop=hrtime(true);

58 $res = ($stop - $start) / 1000.0 / 1000.0;

59 output($N, $iter, $i, $res);

60 echo $A[0] . "\n";

61 echo $A[1] . "\n";

62 }

63 function output($N, $iters, $iter, $val) {

64 echo "fannkuchredux-php N/iters/iter/val;" . $N . ";" .

$iters . ";" . $iter . ";" . $val . ";" . "\n";↪→

65 }

66 ?>

Listing 18: fannkuchredux, PHP, fannkuchredux.php-1.php

appendix/source-assets/fannkuchredux.php-1.graalphp:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy, transliterated from Mike Pall's
Lua program↪→

5 */

6 // modifications to version on benchmarksgame website

7 // remove list() builtin and assign variables explicitly

8 // remove strings from printf and print result values directly

9 // use a fixed N instead of command line argument

10 // introduce warm up and timing

11 function Fannkuch($n){

12 $p = $q = $s = array();

13 $sign = 1; $maxflips = $sum = 0; $m = $n-1;

67

C. Evaluation Assets

14 for ($i=0; $i<$n; $i++){ $p[$i] = $i; $q[$i] = $i; $s[$i] =

$i; }↪→

15 do {

16 // Copy and flip.

17 $q0 = $p[0]; //

Cache 0th element.↪→

18 if ($q0 != 0){

19 for($i=1; $i<$n; $i++) $q[$i] = $p[$i];

// Work on a copy.↪→

20 $flips = 1;

21 do {

22 $qq = $q[$q0];

23 if ($qq == 0){

// ... until 0th element is 0.↪→

24 $sum += $sign*$flips;

25 if ($flips > $maxflips) $maxflips = $flips;

// New maximum?↪→

26 break;

27 }

28 $q[$q0] = $q0;

29 if ($q0 >= 3){

30 $i = 1; $j = $q0 - 1;

31 do { $t = $q[$i]; $q[$i] = $q[$j]; $q[$j] =

$t; $i++; $j--; } while ($i < $j);↪→

32 }

33 $q0 = $qq; $flips++;

34 } while (true);

35 }

36 // Permute.

37 if ($sign == 1){

38 $t = $p[1]; $p[1] = $p[0]; $p[0] = $t; $sign = -1;

// Rotate 0<-1.↪→

39 } else {

40 $t = $p[1]; $p[1] = $p[2]; $p[2] = $t; $sign = 1;

// Rotate 0<-1 and 0<-1<-2.↪→

41 for($i=2; $i<$n; $i++){

42 $sx = $s[$i];

43 if ($sx != 0){ $s[$i] = $sx-1; break; }

44 if ($i == $m) return array($sum,$maxflips);

// Out of permutations.↪→

45 $s[$i] = $i;

46 // Rotate 0<-...<-i+1.

47 $t = $p[0]; for($j=0; $j<=$i; $j++){ $p[$j] =

$p[$j+1]; } $p[$i+1] = $t;↪→

68

C.1. Benchmark Source Files

48 }

49 }

50 } while (true);

51 }

52 $N = 12;

53 $iter = 30;

54 for($i = 0; $i < $iter; $i ++) {

55 $start=graalphp_time_ns();

56 $A = Fannkuch($N);

57 $stop=graalphp_time_ns();

58 $res = ($stop - $start) / 1000.0 / 1000.0;

59 output($N, $iter, $i, $res);

60 println($A[0]); println($A[1]);

61 }

62 function output($N, $iters, $iter, $val) {

63 graalphp_print_args("fannkuchredux-gphp N/iters/iter/val",

$N , $iters , $iter, $val);↪→

64 }

65 ?>

Listing 19: fannkuchredux, graalphp, fannkuchredux.php-1.graalphp

C.1.2 Spectralnorm

appendix/source-assets/spectralnorm.php-2-val.php:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy

5 modified by anon

6 */

7 /*

8 modifications:

9 - pass integer by value not by reference

10 - pass global variable as argument instead of using global

keyword↪→

69

C. Evaluation Assets

11 - do not print additional text beside result value

12 - replace for each by for keyword

13 - add timing measurements

14 */

15 // pass by val version passes global variable as argument by

value instead of by reference↪→

16 function A($i, $j){

17 return 1.0 / (((($i+$j) * ($i+$j+1)) >> 1) + $i + 1);

18 }

19 function Av($n, $v, $Av){

20 for ($i = 0; $i < $n; ++$i) {

21 $sum = 0.0;

22 for($j = 0; $j < $n; $j++) {

23 $v_j = $v[$j];

24 $sum += A($i,$j) * $v_j;

25 }

26 $Av[$i] = $sum;

27 }

28 return $Av;

29 }

30 function Atv($n, $v, $Atv){

31 for($i = 0; $i < $n; ++$i) {

32 $sum = 0.0;

33 for($j = 0; $j < $n; $j++) {

34 $v_j = $v[$j];

35 $sum += A($j,$i) * $v_j;

36 }

37 $Atv[$i] = $sum;

38 }

39 return $Atv;

40 }

41 function AtAv($n, $v, $_tpl){

42 $tmp = Av($n,$v, $_tpl);

43 return Atv($n, $tmp, $_tpl);

44 }

45 function doIteration($n) {

46 $u = array_fill(0, $n, 1.0);

47 $_tpl = array_fill(0, $n, 0.0);

70

C.1. Benchmark Source Files

48 for ($i=0; $i<10; $i++){

49 $v = AtAv($n,$u, $_tpl);

50 $u = AtAv($n,$v, $_tpl);

51 }

52 $vBv = 0.0;

53 $vv = 0.0;

54 for($i = 0; $i < $n; $i ++) {

55 $val = $v[$i];

56 $vBv += $u[$i]*$val;

57 $vv += $val*$val;

58 }

59 return sqrt($vBv/$vv);

60 }

61 $N = 5500;

62 $iter = 30;

63 for($i = 0; $i < $iter; $i ++) {

64 $start=hrtime(true);

65 $A = doIteration($N);

66 $stop=hrtime(true);

67 $res = ($stop - $start) / 1000.0 / 1000.0;

68 output($N, $iter, $i, $res);

69 echo $A . "\n";

70 }

71 function output($N, $iters, $iter, $val) {

72 echo "spectralnorm-val-php;" . $N . ";" . $iters . ";" .

$iter . ";" . $val . ";" . "\n";↪→

73 }

Listing 20: spectralnorm copy-by-value, PHP spectralnorm.php-2-val.php

appendix/source-assets/spectralnorm.php-2-ref.php:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy

5 modified by anon

71

C. Evaluation Assets

6 */

7 /*

8 modifications:

9 - pass integer by value not by reference

10 - pass global variable as argument instead of using global

keyword↪→

11 - do not print additional text beside result value

12 - replace for each by for keyword

13 - add timing measurements

14 */

15 function A($i, $j){

16 return 1.0 / (((($i+$j) * ($i+$j+1)) >> 1) + $i + 1);

17 }

18 function Av($n, &$v, &$_tpl){

19 $Av = $_tpl; // assign by value

20 for ($i = 0; $i < $n; ++$i) {

21 $sum = 0.0;

22 for($j = 0; $j < $n; $j++) {

23 $v_j = $v[$j];

24 $sum += A($i,$j) * $v_j;

25 }

26 $Av[$i] = $sum;

27 }

28 return $Av;

29 }

30 function Atv($n, &$v, &$_tpl){

31 $Atv = $_tpl;

32 for($i = 0; $i < $n; ++$i) {

33 $sum = 0.0;

34 for($j = 0; $j < $n; $j++) {

35 $v_j = $v[$j];

36 $sum += A($j,$i) * $v_j;

37 }

38 $Atv[$i] = $sum;

39 }

40 return $Atv;

41 }

42 function AtAv($n, &$v, &$_tpl){

43 $tmp = Av($n,$v, $_tpl);

72

C.1. Benchmark Source Files

44 return Atv($n, $tmp, $_tpl);

45 }

46 function doIteration($n) {

47 $u = array_fill(0, $n, 1.0);

48 $_tpl = array_fill(0, $n, 0.0);

49 for ($i=0; $i<10; $i++){

50 $v = AtAv($n,$u, $_tpl);

51 $u = AtAv($n,$v, $_tpl);

52 }

53 $vBv = 0.0;

54 $vv = 0.0;

55 for($i = 0; $i < $n; $i ++) {

56 $val = $v[$i];

57 $vBv += $u[$i]*$val;

58 $vv += $val*$val;

59 }

60 return sqrt($vBv/$vv);

61 }

62 $N = 5500;

63 $iter = 30;

64 for($i = 0; $i < $iter; $i ++) {

65 $start=hrtime(true);

66 $A = doIteration($N);

67 $stop=hrtime(true);

68 $res = ($stop - $start) / 1000.0 / 1000.0;

69 output($N, $iter, $i, $res);

70 echo $A . "\n";

71 }

72 function output($N, $iters, $iter, $val) {

73 echo "spectralnorm-ref-php;" . $N . ";" . $iters . ";" .

$iter . ";" . $val . ";" . "\n";↪→

74 }

Listing 21: spectralnorm copy-by-reference, PHP, spectralnorm.php-2-ref.php

appendix/source-assets/spectralnorm.php-2-val.graalphp:

73

C. Evaluation Assets

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy

5 modified by anon

6 */

7 /*

8 modifications:

9 - pass integer by value not by reference

10 - pass global variable as argument instead of using global

keyword↪→

11 - do not print additional text beside result value

12 - replace for each by for keyword

13 */

14 // pass by val version passes global variable as argument by

value instead of by reference↪→

15 function A($i, $j){

16 return 1.0 / (((($i+$j) * ($i+$j+1)) >> 1) + $i + 1);

17 }

18 function Av($n, $v, $Av){

19 for ($i = 0; $i < $n; ++$i) {

20 $sum = 0.0;

21 for($j = 0; $j < $n; $j++) {

22 $v_j = $v[$j];

23 $sum += A($i,$j) * $v_j;

24 }

25 $Av[$i] = $sum;

26 }

27 return $Av;

28 }

29 function Atv($n, $v, $Atv){

30 for($i = 0; $i < $n; ++$i) {

31 $sum = 0.0;

32 for($j = 0; $j < $n; $j++) {

33 $v_j = $v[$j];

34 $sum += A($j,$i) * $v_j;

35 }

36 $Atv[$i] = $sum;

74

C.1. Benchmark Source Files

37 }

38 return $Atv;

39 }

40 function AtAv($n, $v, $_tpl){

41 $tmp = Av($n,$v, $_tpl);

42 return Atv($n, $tmp, $_tpl);

43 }

44 function doIteration($n) {

45 $u = array_fill(0, $n, 1.0);

46 $_tpl = array_fill(0, $n, 0.0);

47 for ($i=0; $i<10; $i++){

48 $v = AtAv($n,$u, $_tpl);

49 $u = AtAv($n,$v, $_tpl);

50 }

51 $vBv = 0.0;

52 $vv = 0.0;

53 for($i = 0; $i < $n; $i ++) {

54 $val = $v[$i];

55 $vBv += $u[$i]*$val;

56 $vv += $val*$val;

57 }

58 return sqrt($vBv/$vv);

59 }

60 $N = 5500;

61 $iter = 50;

62 for($i = 0; $i < $iter; $i ++) {

63 $start=graalphp_time_ns();

64 $A = doIteration($N);

65 $stop=graalphp_time_ns();

66 $res = ($stop - $start) / 1000.0 / 1000.0;

67 output($N, $iter, $i, $res);

68 println($A);

69 }

70 function output($N, $iters, $iter, $val) {

75

C. Evaluation Assets

71 graalphp_print_args("spectralnorm-val", $N , $iters ,

$iter, $val);↪→

72 }

Listing 22: spectralnorm copy-by-value, graalphp, spectralnorm.php-2-
val.graalphp

appendix/source-assets/spectralnorm.php-2-ref.graalphp:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Isaac Gouy

5 modified by anon

6 */

7 /*

8 modifications:

9 - pass integer by value not by reference

10 - pass global variable as argument instead of using global

keyword↪→

11 - do not print additional text beside result value

12 - replace for each by for keyword

13 */

14 function A($i, $j){

15 return 1.0 / (((($i+$j) * ($i+$j+1)) >> 1) + $i + 1);

16 }

17 function Av($n, &$v, &$_tpl){

18 $Av = $_tpl; // assign by value

19 for ($i = 0; $i < $n; ++$i) {

20 $sum = 0.0;

21 for($j = 0; $j < $n; $j++) {

22 $v_j = $v[$j];

23 $sum += A($i,$j) * $v_j;

24 }

25 $Av[$i] = $sum;

26 }

27 return $Av;

28 }

29 function Atv($n, &$v, &$_tpl){

30 $Atv = $_tpl;

76

C.1. Benchmark Source Files

31 for($i = 0; $i < $n; ++$i) {

32 $sum = 0.0;

33 for($j = 0; $j < $n; $j++) {

34 $v_j = $v[$j];

35 $sum += A($j,$i) * $v_j;

36 }

37 $Atv[$i] = $sum;

38 }

39 return $Atv;

40 }

41 function AtAv($n, &$v, &$_tpl){

42 $tmp = Av($n,$v, $_tpl);

43 return Atv($n, $tmp, $_tpl);

44 }

45 function doIteration($n) {

46 $u = array_fill(0, $n, 1.0);

47 $_tpl = array_fill(0, $n, 0.0);

48 for ($i=0; $i<10; $i++){

49 $v = AtAv($n,$u, $_tpl);

50 $u = AtAv($n,$v, $_tpl);

51 }

52 $vBv = 0.0;

53 $vv = 0.0;

54 for($i = 0; $i < $n; $i ++) {

55 $val = $v[$i];

56 $vBv += $u[$i]*$val;

57 $vv += $val*$val;

58 }

59 return sqrt($vBv/$vv);

60 }

61 $N = 5500;

62 $iter = 50;

63 for($i = 0; $i < $iter; $i ++) {

64 $start=graalphp_time_ns();

65 $A = doIteration($N);

66 $stop=graalphp_time_ns();

77

C. Evaluation Assets

67 $res = ($stop - $start) / 1000.0 / 1000.0;

68 output($N, $iter, $i, $res);

69 println($A);

70 }

71 function output($N, $iters, $iter, $val) {

72 graalphp_print_args("spectralnorm-ref-gphp", $N , $iters ,

$iter, $val);↪→

73 }

Listing 23: spectralnorm copy-by-reference, graalphp, spectralnorm.php-2-
ref.graalphp

C.1.3 Binary-Trees

appendix/source-assets/binarytrees.php-3-val.php:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Peter Baltruschat

5 modified by Levi Cameron

6 */

7 /*

8 moditifcations:

9 - Define command line arguments within script already (argv)

10 - Simplified version of printf; print values without

additional text↪→

11 - === operator (identity) replaced with == (equality)

12 - We run this benchmark twice. Once with explicit copy-by-ref

semantics for↪→

13 arrays (the & Operator), and one version which embodies

14 copy-by-value which is the default for PHP. By-reference

results↪→

15 show what a more sophisticated array implementation which may

16 implement copy-on-write or similar techniques can achieve.

17 */

18 function bottomUpTree($depth)

19 {

20 if (!$depth) return array(-1,-1);

21 $depth--;

78

C.1. Benchmark Source Files

22 return array(

23 bottomUpTree($depth),

24 bottomUpTree($depth));

25 }

26 function itemCheck($treeNode) {

27 return 1

28 + ($treeNode[0][0] == -1 ? 1 : itemCheck($treeNode[0]))

29 + ($treeNode[1][0] == -1 ? 1 : itemCheck($treeNode[1]));

30 }

31 function doAlgorithm($n) {

32 $minDepth = 4;

33 $maxDepth = max($minDepth + 2, $n);

34 $stretchDepth = $maxDepth + 1;

35 $stretchTree = bottomUpTree($stretchDepth);

36 echo $stretchDepth . "\n";

37 echo itemCheck($stretchTree) . "\n";

38 unset($stretchTree);

39 $longLivedTree = bottomUpTree($maxDepth);

40 $iterations = 1 << ($maxDepth);

41 do

42 {

43 $check = 0;

44 for($i = 1; $i <= $iterations; ++$i)

45 {

46 $t = bottomUpTree($minDepth);

47 $check += itemCheck($t);

48 unset($t);

49 }

50 echo $iterations . "\n";

51 echo $minDepth . "\n";

52 echo $check . "\n";

53 $minDepth += 2;

54 $iterations >>= 2;

55 }

56 while($minDepth <= $maxDepth);

79

C. Evaluation Assets

57 echo $maxDepth . "\n";

58 echo itemCheck($longLivedTree) . "\n";

59 }

60 // benchmark

61 $N = 21;

62 $iter = 50;

63 for($i = 0; $i < $iter; $i ++) {

64 $start=hrtime(true);

65 doAlgorithm($N);

66 $stop=hrtime(true);

67 $res = ($stop - $start) / 1000.0 / 1000.0;

68 output($N, $iter, $i, $res);

69 }

70 function output($N, $iters, $iter, $val) {

71 echo "binary-trees-val N/iters/iter/val;" . $N . ";" .

$iters . ";" . $iter . ";" . $val . ";" . "\n";↪→

72 }

73 ?>

74

Listing 24: binary-trees copy-by-value, PHP binarytrees.php-3-val.php

appendix/source-assets/binarytrees.php-3-ref.php:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Peter Baltruschat

5 modified by Levi Cameron

6 */

7 /*

8 moditifcations:

9 - Define command line arguments within script already (argv)

10 - Simplified version of printf; print values without

additional text↪→

80

C.1. Benchmark Source Files

11 - === operator (identity) replaced with == (equality)

12 - We run this benchmark twice. Once with explicit copy-by-ref

semantics for↪→

13 arrays (the & Operator), and one version which embodies

14 copy-by-value which is the default for PHP. By-reference

results↪→

15 show what a more sophisticated array implementation which may

16 implement copy-on-write or similar techniques can achieve.

17 */

18 // this version of the benchmark passes all arrays by reference

where possible↪→

19 function &bottomUpTree($depth)

20 {

21 if (!$depth) {

22 $A = array(-1,-1);

23 return $A;

24 }

25 $depth--;

26 $A = array(

27 bottomUpTree($depth),

28 bottomUpTree($depth));

29 return $A;

30 }

31 function itemCheck(&$treeNode) {

32 return 1

33 + ($treeNode[0][0] == -1 ? 1 : itemCheck($treeNode[0]))

34 + ($treeNode[1][0] == -1 ? 1 : itemCheck($treeNode[1]));

35 }

36 function doAlgorithm($n) {

37 $minDepth = 4;

38 $maxDepth = max($minDepth + 2, $n);

39 $stretchDepth = $maxDepth + 1;

40 $stretchTree = & bottomUpTree($stretchDepth);

41 echo $stretchDepth . "\n";

42 echo itemCheck($stretchTree) . "\n";

43 unset($stretchTree);

44 $longLivedTree = & bottomUpTree($maxDepth);

81

C. Evaluation Assets

45 $iterations = 1 << ($maxDepth);

46 do

47 {

48 $check = 0;

49 for($i = 1; $i <= $iterations; ++$i)

50 {

51 $t = &bottomUpTree($minDepth);

52 $check += itemCheck($t);

53 unset($t);

54 }

55 echo $iterations . "\n";

56 echo $minDepth . "\n";

57 echo $check . "\n";

58 $minDepth += 2;

59 $iterations >>= 2;

60 }

61 while($minDepth <= $maxDepth);

62 echo $maxDepth . "\n";

63 echo itemCheck($longLivedTree) . "\n";

64 }

65 // benchmark

66 $N = 21;

67 $iter = 50;

68 for($i = 0; $i < $iter; $i ++) {

69 $start=hrtime(true);

70 doAlgorithm($N);

71 $stop=hrtime(true);

72 $res = ($stop - $start) / 1000.0 / 1000.0;

73 output($N, $iter, $i, $res);

74 }

75 function output($N, $iters, $iter, $val) {

76 echo "binary-trees-ref N/iters/iter/val;" . $N . ";" .

$iters . ";" . $iter . ";" . $val . ";" . "\n";↪→

82

C.1. Benchmark Source Files

77 }

78 ?>

79

Listing 25: binary-trees copy-by-reference, PHP, binarytrees.php-3-ref.php

appendix/source-assets/binarytrees.php-3-val.graalphp:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Peter Baltruschat

5 modified by Levi Cameron

6 */

7 /*

8 moditifcations:

9 - Define command line arguments within script already (argv)

10 - Simplified version of printf; print values without

additional text↪→

11 - === operator (identity) replaced with == (equality)

12 - We run this benchmark twice. Once with explicit copy-by-ref

semantics for↪→

13 arrays (the & Operator), and one version which embodies

14 copy-by-value which is the default for PHP. By-reference

results↪→

15 show what a more sophisticated array implementation which may

16 implement copy-on-write or similar techniques can achieve.

17 */

18 function bottomUpTree($depth)

19 {

20 if (!$depth) return array(-1,-1);

21 $depth--;

22 return array(

23 bottomUpTree($depth),

24 bottomUpTree($depth));

25 }

26 function itemCheck($treeNode) {

27 return 1

28 + ($treeNode[0][0] == -1 ? 1 : itemCheck($treeNode[0]))

29 + ($treeNode[1][0] == -1 ? 1 : itemCheck($treeNode[1]));

30 }

83

C. Evaluation Assets

31 function doAlgorithm($n) {

32 $minDepth = 4;

33 $maxDepth = max($minDepth + 2, $n);

34 $stretchDepth = $maxDepth + 1;

35 $stretchTree = bottomUpTree($stretchDepth);

36 println($stretchDepth);

37 println(itemCheck($stretchTree));

38 unset($stretchTree);

39 $longLivedTree = bottomUpTree($maxDepth);

40 $iterations = 1 << ($maxDepth);

41 do

42 {

43 $check = 0;

44 for($i = 1; $i <= $iterations; ++$i)

45 {

46 $t = bottomUpTree($minDepth);

47 $check += itemCheck($t);

48 unset($t);

49 }

50 println($iterations);

51 println($minDepth);

52 println($check);

53 $minDepth += 2;

54 $iterations >>= 2;

55 }

56 while($minDepth <= $maxDepth);

57 println($maxDepth);

58 println(itemCheck($longLivedTree));

59 }

60 $N = 21;

61 $iter = 15;

84

C.1. Benchmark Source Files

62 for($i = 0; $i < $iter; $i ++) {

63 $start=graalphp_time_ns();

64 doAlgorithm($N);

65 $stop=graalphp_time_ns();

66 $res = ($stop - $start) / 1000.0 / 1000.0;

67 output($N, $iter, $i, $res);

68 }

69 function output($N, $iters, $iter, $val) {

70 graalphp_print_args("binary-trees-val N/iters/iter/val", $N

, $iters , $iter, $val);↪→

71 }

72 ?>

Listing 26: binary-trees copy-by-value, graalphp, binarytrees.php-3-val.graalphp

appendix/source-assets/binarytrees.php-3-ref.graalphp:

1 <?php

2 /* The Computer Language Benchmarks Game

3 https://salsa.debian.org/benchmarksgame-team/benchmarksgame/

4 contributed by Peter Baltruschat

5 modified by Levi Cameron

6 */

7 /*

8 moditifcations:

9 - Define command line arguments within script already (argv)

10 - Simplified version of printf; print values without

additional text↪→

11 - === operator (identity) replaced with == (equality)

12 - We run this benchmark twice. Once with explicit copy-by-ref

semantics for↪→

13 arrays (the & Operator), and one version which embodies

14 copy-by-value which is the default for PHP. By-reference

results↪→

15 show what a more sophisticated array implementation which

may↪→

16 implement copy-on-write or similar techniques can achieve.

17 */

85

C. Evaluation Assets

18 // this version of the benchmark passes all arrays by reference

where possible↪→

19 function &bottomUpTree($depth)

20 {

21 if (!$depth) return array(-1,-1);

22 $depth--;

23 return array(

24 bottomUpTree($depth),

25 bottomUpTree($depth));

26 }

27 function itemCheck(&$treeNode) {

28 return 1

29 + ($treeNode[0][0] == -1 ? 1 : itemCheck($treeNode[0]))

30 + ($treeNode[1][0] == -1 ? 1 : itemCheck($treeNode[1]));

31 }

32 function doAlgorithm($n) {

33 $minDepth = 4;

34 $maxDepth = max($minDepth + 2, $n);

35 $stretchDepth = $maxDepth + 1;

36 $stretchTree = &bottomUpTree($stretchDepth);

37 println($stretchDepth);

38 println(itemCheck($stretchTree));

39 unset($stretchTree);

40 $longLivedTree = &bottomUpTree($maxDepth);

41 $iterations = 1 << ($maxDepth);

42 do

43 {

44 $check = 0;

45 for($i = 1; $i <= $iterations; ++$i)

46 {

47 $t = & bottomUpTree($minDepth);

48 $check += itemCheck($t);

49 unset($t);

50 }

51 println($iterations);

52 println($minDepth);

86

C.1. Benchmark Source Files

53 println($check);

54 $minDepth += 2;

55 $iterations >>= 2;

56 }

57 while($minDepth <= $maxDepth);

58 println($maxDepth);

59 println(itemCheck($longLivedTree));

60 }

61 $N = 21;

62 $iter = 50;

63 for($i = 0; $i < $iter; $i ++) {

64 $start=graalphp_time_ns();

65 doAlgorithm($N);

66 $stop=graalphp_time_ns();

67 $res = ($stop - $start) / 1000.0 / 1000.0;

68 output($N, $iter, $i, $res);

69 }

70 function output($N, $iters, $iter, $val) {

71 graalphp_print_args("binary-trees-ref N/iters/iter/val", $N

, $iters , $iter, $val);↪→

72 }

73 ?>

Listing 27: binary-trees copy-by-reference, graalphp, binarytrees.php-3-
ref.graalphp

87

Appendix D

Acknowledgment

The author of this thesis would like to thank Zhendong Su and Manuel
Rigger from ETH Zurich for their supervision on this thesis. In particular,
Manuel Rigger for his insightful advice throughout the project. We would
also like to thank Christian Humer from Oracle Labs for his code review on
the array implementation.

89

Bibliography

[1] Paul Biggar, Edsko de Vries, and David Gregg. A practical solution for
scripting language compilers. In Proceedings of the 2009 ACM Symposium
on Applied Computing, SAC ’09, page 1916–1923, New York, NY, USA,
2009. Association for Computing Machinery.

[2] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams,
Qi Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar, Jason
Evans, and Stephen Tu. The hiphop compiler for php. SIGPLAN Not.,
47(10):575–586, October 2012.

[3] Facebook. HHVM, the HipHop Virtual Machine. https://hhvm.com,
archived: url. Accessed on 20-08-03.

[4] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew
Paroski, Brett Simmers, Edwin Smith, and Owen Yamauchi. The hiphop
virtual machine. SIGPLAN Not., 49(10):777–790, October 2014.

[5] Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. Performance anal-
ysis for languages hosted on the truffle framework. In Proceedings of
the 15th International Conference on Managed Languages & Runtimes, Man-
Lang ’18, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[6] Tiobe Software B.V. TIOBE programming community index. https:

//www.tiobe.com/tiobe-index/, archived: url, Accessed: 20-08-15.

[7] Pierre Carbonnelle. PYPL PopularitY of Programming Language.
https://pypl.github.io/PYPL.html, archived: url, Accessed: 20-08-
15.

91

https://hhvm.com
https://web.archive.org/web/20200806004809/https://hhvm.com/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20200817115948/https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://web.archive.org/web/20200817135420/https://pypl.github.io/PYPL.html

Bibliography

[8] RedMonk. The RedMonk Programming Language Rankings:
June 2020. https://redmonk.com/sogrady/2020/07/27/language-

rankings-6-20/, archived: url, Accessed: 20-08-15.

[9] W3Techs, Q-Success Web-based Services. Usage statistics of PHP for
websites. https://w3techs.com/technologies/details/pl-php, Ac-
cessed: 20-08-15.

[10] Andrin Bertschi. Graalphp, A PHP implementation built on GraalVM.
https://github.com/abertschi/graalphp, archived: url. Accessed on
20-08-28.

[11] Doug Bagley, Brent Fulgham, and Isaac Gouy. The Computer Language
Benchmarks Game. https://benchmarksgame-team.pages.debian.

net/benchmarksgame/index.html, archived: url, 2004. Accessed on
20-07-08.

[12] PHP. Language Specification for PHP. https://github.com/php/php-
langspec, archived: url. Accessed 20-08-10.

[13] PHP. The History of PHP. https://www.php.net/manual/en/

history.php.php, archived: url. Accessed 20-08-10.

[14] PHP. Introduction of Language Specification for PHP. https://news-
web.php.net/php.internals/75886, archived: url. Accessed 20-08-10.

[15] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and
Andreas Stefik. An empirical study of the influence of static type sys-
tems on the usability of undocumented software. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, page 683–702, New York, NY,
USA, 2012. Association for Computing Machinery.

[16] PHP. Strict Types in PHP. https://www.php.net/manual/

en/functions.arguments.php#functions.arguments.type-

declaration.strict, archived: url, Accessed: 20-08-10.

[17] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications, OOP-
SLA ’06, page 944–953, New York, NY, USA, 2006. Association for Com-
puting Machinery.

[18] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. Tracing the meta-level: Pypy’s tracing jit compiler. In
ICOOOLPS@ECOOP, 2009.

92

https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://web.archive.org/web/20200817120705/https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://w3techs.com/technologies/details/pl-php
https://github.com/abertschi/graalphp
https://web.archive.org/web/20200910102349/https://github.com/abertschi/graalphp
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://web.archive.org/web/20200815170209/https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://github.com/php/php-langspec
https://github.com/php/php-langspec
https://web.archive.org/web/20200815172217/https://github.com/php/php-langspec
https://www.php.net/manual/en/history.php.php
https://www.php.net/manual/en/history.php.php
https://web.archive.org/save/https://www.php.net/manual/en/history.php.php
https://news-web.php.net/php.internals/75886
https://news-web.php.net/php.internals/75886
https://web.archive.org/web/20200815172119/https://news-web.php.net/php.internals/75886
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://web.archive.org/web/20200813192054/https://www.php.net/manual/en/functions.arguments.php

Bibliography

[19] M Anton Ertl and David Gregg. The structure and performance of
efficient interpreters. Journal of Instruction-Level Parallelism, 5:1–25, 2003.

[20] Carl Friedrich Bolz, Armin Rigo. How to Not Write Virtual Machines
for Dynamic Languages. In 3rd Workshop on Dynamic Languages and
Applications, 2007.

[21] OpenJDK, John Rose. JEP 243: Java-Level JVM Compiler Interface.
https://openjdk.java.net/jeps/243, archived: url, 2014-10-29. Ac-
cessed on 20-07-23.

[22] Google. V8 JavaScript Engine. https://v8.dev/, archived: url. Ac-
cessed on 20-07-23.

[23] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, David Cox, Thomas Rodriguez,
and Kenneth Russell. Design of the java hotspot tm client compiler for
java 6. ACM Transactions on Architecture and Code Optimization, 2008.

[24] PyPy. PyPy. https://www.pypy.org/, archived: url. Accessed 20-08-10.

[25] OpenJDK, Igor Veresov. JEP 317: Experimental Java-Based JIT Com-
piler. https://openjdk.java.net/jeps/317, archived: url. Accessed
on 20-07-23.

[26] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer,
Doug Simon, and Hanspeter Mössenböck. An intermediate representa-
tion for speculative optimizations in a dynamic compiler. In Proceedings
of the 7th ACM Workshop on Virtual Machines and Intermediate Languages,
VMIL ’13, page 1–10, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[27] Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wimmer,
and Hanspeter Mössenböck. Graal ir : An extensible declarative in-
termediate representation. 2013. In Proceedings of the Asia-Pacific
Programming Languages and Compilers Workshop.

[28] Oracle. GraalVM Native Image, Reference Manual. https://www.

graalvm.org/docs/reference-manual/native-image, archived: url.
Accessed on 20-08-03.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., USA, 1995.

93

https://openjdk.java.net/jeps/243
https://web.archive.org/web/20200815170842/https://openjdk.java.net/jeps/243
https://v8.dev/
https://web.archive.org/web/20200815171207/https://v8.dev/
https://www.pypy.org/
https://web.archive.org/web/20200910102107/https://www.pypy.org/
https://openjdk.java.net/jeps/317
https://web.archive.org/web/20200815171416/https://openjdk.java.net/jeps/317
https://www.graalvm.org/docs/reference-manual/native-image
https://www.graalvm.org/docs/reference-manual/native-image
https://web.archive.org/web/20200815171613/https://www.graalvm.org/docs/reference-manual/native-image/

Bibliography

[30] OpenJDK. Hotspot Performance Tactics. https://wiki.openjdk.

java.net/display/HotSpot/PerformanceTacticIndex, archived: url.
Accessed 20-08-10.

[31] PHP. PHP RFC: JIT. https://wiki.php.net/rfc/jit, archived: url,
Accessed: 20-09-10.

[32] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and
Matthias Grimmer. Practical partial evaluation for high-performance
dynamic language runtimes. SIGPLAN Not., 52(6):662–676, June 2017.

[33] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. Self-optimizing ast interpreters.
SIGPLAN Not., 48(2):73–82, October 2012.

[34] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One vm to rule them all. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2013, page 187–204, New York, NY,
USA, 2013. Association for Computing Machinery.

[35] Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland Schatz,
and Hanspeter Mössenböck. Supporting on-stack replacement in un-
structured languages by loop reconstruction and extraction. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes, MPLR 2019, page 1–13, New York,
NY, USA, 2019. Association for Computing Machinery.

[36] PHP. Supported Versions. https://www.php.net/supported-

versions.php, archived: url, Accessed: 20-08-18.

[37] Eclipse Foundation. Eclipse PHP Development Tools. https://www.

eclipse.org/pdt/, archived: url. Accessed on 20-07-23.

[38] PHP. Supported Datatypes in PHP. https://www.php.net/manual/

en/language.types.intro.php, archived: url, Accessed: 20-08-18.

[39] PHP. Ternary Operator Associativity. https://wiki.php.net/rfc/

ternary_associativity, archived: url, Accessed: 20-08-18.

[40] Stefan Marr and Benoit Daloze. Few versatile vs. many specialized col-
lections: How to design a collection library for exploratory program-
ming? In Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming, Programming’18 Companion,

94

https://wiki.openjdk.java.net/display/HotSpot/PerformanceTacticIndex
https://wiki.openjdk.java.net/display/HotSpot/PerformanceTacticIndex
https://web.archive.org/web/20200815171847/https://wiki.openjdk.java.net/display/HotSpot/PerformanceTacticIndex
https://wiki.php.net/rfc/jit
https://web.archive.org/web/20200910100920/https://wiki.php.net/rfc/jit
https://www.php.net/supported-versions.php
https://www.php.net/supported-versions.php
https://web.archive.org/web/20200819095637/https://www.php.net/supported-versions.php
https://www.eclipse.org/pdt/
https://www.eclipse.org/pdt/
https://web.archive.org/web/20200815170544/https://www.eclipse.org/pdt/
https://www.php.net/manual/en/language.types.intro.php
https://www.php.net/manual/en/language.types.intro.php
https://web.archive.org/web/20200823143027/https://www.php.net/manual/en/language.types.intro.php
https://wiki.php.net/rfc/ternary_associativity
https://wiki.php.net/rfc/ternary_associativity
https://web.archive.org/save/https://wiki.php.net/rfc/ternary_associativity

Bibliography

page 135–143, New York, NY, USA, 2018. Association for Computing
Machinery.

[41] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Storage
strategies for collections in dynamically typed languages. SIGPLAN
Not., 48(10):167–182, October 2013.

[42] Oracle. Truffle Libraries. https://www.graalvm.org/truffle/

javadoc/com/oracle/truffle/api/library/package-summary.html,
archived: url, Accessed: 20-09-01.

[43] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mössenböck. An object storage model for
the truffle language implementation framework. In Proceedings of the
2014 International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’14,
page 133–144, New York, NY, USA, 2014. Association for Computing
Machinery.

[44] HHVM. Ending Support for PHP. https://hhvm.com/blog/2018/

09/12/end-of-php-support-future-of-hack.html, archived: url, Ac-
cessed: 20-08-28.

[45] The Computer Language Benchmarks Game, Fannkuchre-
dux. https://benchmarksgame-team.pages.debian.net/

benchmarksgame/program/fannkuchredux-php-1.html, archived:
url. Accessed on 20-07-08.

[46] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,
and Laurence Tratt. Virtual machine warmup blows hot and cold. Proc.
ACM Program. Lang., 1(OOPSLA), October 2017.

[47] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigor-
ous java performance evaluation. SIGPLAN Not., 42(10):57–76, October
2007.

[48] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reason-
able time. In Proceedings of the 2013 International Symposium on Memory
Management, ISMM ’13, page 63–74, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[49] The Computer Language Benchmarks Game, Binary Trees. https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/

program/binarytrees-php-3.html, archived: url. Accessed on
20-07-08.

95

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/library/package-summary.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/library/package-summary.html
https://web.archive.org/web/20200909210242/https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/library/package-summary.html
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://web.archive.org/web/20200827221521/https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-php-1.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-php-1.html
https://web.archive.org/web/20190912041209/https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-php-1.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-php-3.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-php-3.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-php-3.html
https://web.archive.org/web/20200830125044/https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-php-3.html

Bibliography

[50] The Computer Language Benchmarks Game, Spectralnorm. https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/

program/spectralnorm-php-2.html, archived: url. Accessed on
20-07-08.

[51] JPHP, an alternative to PHP on the JVM. http://jphp.develnext.

org/, archived: url. Accessed on 20-07-23.

[52] PHP. PHP Manual, References. https://www.php.net/manual/en/

language.references.php, archived: url. Accessed on 20-08-03.

[53] Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland Schatz,
and Hanspeter Mössenböck. Supporting on-stack replacement in un-
structured languages by loop reconstruction and extraction. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes, MPLR 2019, page 1–13, New York,
NY, USA, 2019. Association for Computing Machinery.

[54] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. Bringing low-level languages
to the jvm: Efficient execution of llvm ir on truffle. In Proceedings of
the 8th International Workshop on Virtual Machines and Intermediate Lan-
guages, VMIL 2016, page 6–15, New York, NY, USA, 2016. Association
for Computing Machinery.

[55] Salim S. Salim, Andy Nisbet, and Mikel Luján. Trufflewasm: A we-
bassembly interpreter on graalvm. In Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’20, page 88–100, New York, NY, USA, 2020. Association for
Computing Machinery.

[56] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JS-
Meter: Comparing the Behavior of JavaScript Benchmarks with Real
Web Applications. In Proceedings of the 2010 USENIX Conference on Web
Application Development, WebApps’10, page 3, USA, 2010. USENIX As-
sociation.

[57] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams,
Qi Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar, Jason
Evans, and Stephen Tu. The hiphop compiler for php. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, page 575–586, New York, NY,
USA, 2012. Association for Computing Machinery.

96

https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/spectralnorm-php-2.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/spectralnorm-php-2.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/spectralnorm-php-2.html
https://web.archive.org/web/20200830125155/https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/spectralnorm-php-2.html
http://jphp.develnext.org/
http://jphp.develnext.org/
https://web.archive.org/web/20200123133845/http://jphp.develnext.org/
https://www.php.net/manual/en/language.references.php
https://www.php.net/manual/en/language.references.php
https://web.archive.org/web/20200815171655/https://www.php.net/manual/en/language.references.php

Bibliography

[58] Nikita Popov. PHP 7 Virtual Machine. https://nikic.github.io/

2017/04/14/PHP-7-Virtual-machine.html, archived: url, Accessed:
20-08-14.

[59] Nikita Popov. Internal value representation in PHP 7. https:

//nikic.github.io/2015/05/05/Internal-value-representation-

in-PHP-7-part-1.html, archived: url, Accessed: 20-08-15.

[60] Julien Pauli, Nikita Popov, Anthony Ferrara. PHP Internals Book,
Basic structure. http://www.phpinternalsbook.com/php7/internal_

types/zvals/basic_structure.html, archived: url, Accessed: 20-08-
15.

[61] Rohit Kulkarni, Aditi Chavan, and A Hardik. Transpiler and it’s ad-
vantages. International Journal of Computer Science and Information Tech-
nologies, 6(2):1629–1631, 2015.

[62] Bjarne Stroustrup. The Design and Evolution of C++. ACM
Press/Addison-Wesley Publishing Co., USA, 1995. https://

stroustrup.com/dne.html, archived: url, Accessed: 20-08-10.

[63] Microsoft. The TypeScript Language. https://www.typescriptlang.

org/, archived: url, Accessed: 20-08-10.

[64] Roadsend PHP. Roadsend PHP compiler/implementation. https://

github.com/weyrick/roadsend-php, archived: url, Accessed: 20-08-10.

[65] Chaitali Tambe, Pramod Pawar, Dashrath Mane. PHP Optimization
Using Hip Hop Virtual Machine. In International Journal of Advanced Re-
search in Computer Engineering and Technology(IJARCET), Volume 4 Issue
6, June 2015.

[66] P. Biggar. Design and implementation of an ahead-of-time compiler for
PHP. 2010. Trinity College (Dublin Ireland).

[67] Michiaki Tatsubori, Akihiko Tozawa, Toyotaro Suzumura, Scott Trent,
and Tamiya Onodera. Evaluation of a just-in-time compiler retrofitted
for php. SIGPLAN Not., 45(7):121–132, March 2010.

[68] Caucho Technology, Resin. Quercus. https://www.caucho.com/

resin-3.1/doc/quercus.xtp, archived: url, Accessed: 20-08-14.

[69] Jose Castanos, David Edelsohn, Kazuaki Ishizaki, Priya Nagpurkar,
Toshio Nakatani, Takeshi Ogasawara, and Peng Wu. On the benefits
and pitfalls of extending a statically typed language jit compiler for
dynamic scripting languages. SIGPLAN Not., 47(10):195–212, October
2012.

97

https://nikic.github.io/2017/04/14/PHP-7-Virtual-machine.html
https://nikic.github.io/2017/04/14/PHP-7-Virtual-machine.html
https://web.archive.org/web/20200816182405/https://nikic.github.io/2017/04/14/PHP-7-Virtual-machine.html
https://nikic.github.io/2015/05/05/Internal-value-representation-in-PHP-7-part-1.html
https://nikic.github.io/2015/05/05/Internal-value-representation-in-PHP-7-part-1.html
https://nikic.github.io/2015/05/05/Internal-value-representation-in-PHP-7-part-1.html
https://web.archive.org/web/20200816182450/https://nikic.github.io/2015/05/05/Internal-value-representation-in-PHP-7-part-1.html
http://www.phpinternalsbook.com/php7/internal_types/zvals/basic_structure.html
http://www.phpinternalsbook.com/php7/internal_types/zvals/basic_structure.html
https://web.archive.org/web/20200816182627/http://www.phpinternalsbook.com/php7/internal_types/zvals/basic_structure.html
https://stroustrup.com/dne.html
https://stroustrup.com/dne.html
https://web.archive.org/web/20200808113739/https://www.stroustrup.com/dne.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://web.archive.org/web/20200813142801/https://www.typescriptlang.org/
https://github.com/weyrick/roadsend-php
https://github.com/weyrick/roadsend-php
https://web.archive.org/save/https://github.com/weyrick/roadsend-php
https://www.caucho.com/resin-3.1/doc/quercus.xtp
https://www.caucho.com/resin-3.1/doc/quercus.xtp
https://web.archive.org/save/https://www.caucho.com/resin-3.1/doc/quercus.xtp

Bibliography

[70] Christian Thalinger and John Rose. Optimizing invokedynamic. In
Proceedings of the 8th International Conference on the Principles and Practice
of Programming in Java, PPPJ ’10, page 1–9, New York, NY, USA, 2010.
Association for Computing Machinery.

[71] Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing
on VM design and implementation. Science of Computer Programming,
98:408 – 421, 2015. Special Issue on Advances in Dynamic Languages.

[72] Guilherme Ottoni. Hhvm jit: A profile-guided, region-based compiler
for php and hack. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, page
151–165, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[73] Homescu, Andrei and Şuhan, Alex. HappyJIT: a tracing JIT compiler for
PHP. DLS’11 - Proceedings of the 7th Symposium on Dynamic Languages,
01 2011.

[74] HippyVM. HippyVM. https://github.com/hippyvm/hippyvm,
archived: url, Accessed: 20-08-14.

[75] Stefan Marr and Stéphane Ducasse. Tracing vs. partial evaluation:
Comparing meta-compilation approaches for self-optimizing inter-
preters. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, page 821–839, New York, NY, USA, 2015. Association
for Computing Machinery.

[76] Oracle. Graal.JS. https://github.com/graalvm/graaljs, archived: url,
Accessed: 20-08-14.

[77] Oracle. TruffleRuby. https://github.com/oracle/truffleruby,
archived: url, Accessed: 20-08-14.

[78] Oracle. Graalpython. https://github.com/graalvm/graalpython/,
archived: url, Accessed: 20-08-14.

[79] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,
and Hanspeter Mössenböck. High-performance cross-language inter-
operability in a multi-language runtime. SIGPLAN Not., 51(2):78–90,
October 2015.

[80] PHP. PHP source distribution of Zend Engine. https://github.com/

php/php-src, archived: url, Accessed: 20-09-01.

98

https://github.com/hippyvm/hippyvm
https://web.archive.org/web/20200815185011/https://github.com/hippyvm/hippyvm
https://github.com/graalvm/graaljs
https://web.archive.org/web/20200815200544/https://github.com/graalvm/graaljs
https://github.com/oracle/truffleruby
https://web.archive.org/web/20200815200532/https://github.com/oracle/truffleruby
https://github.com/graalvm/graalpython/
https://web.archive.org/web/20200815200558/https://github.com/graalvm/graalpython/
https://github.com/php/php-src
https://github.com/php/php-src
https://web.archive.org/web/20200902160802/https://github.com/php/php-src

Bibliography

[81] Facebook. HHVM source distribution. https://github.com/

facebook/hhvm, archived: url, Accessed: 20-09-01.

[82] Terence Parr. ANother Tool for Language Recognition. https://www.

antlr.org/, archived: url. Accessed on 20-07-23.

[83] Hudson S. CUP Parser Generator for Java. http://www.cs.princeton.
edu/~appel/modern/java/CUP/, archived: url, Princeton University,
1999.

[84] Gerwin Klein. JFlex. http://jflex.de, archived: url. Accessed on
20-07-23.

99

https://github.com/facebook/hhvm
https://github.com/facebook/hhvm
https://web.archive.org/web/20200827050120/https://github.com/facebook/hhvm
https://www.antlr.org/
https://www.antlr.org/
https://web.archive.org/web/20200812214701/https://www.antlr.org/
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.cs.princeton.edu/~appel/modern/java/CUP/
https://web.archive.org/web/20200421042345/https://www.cs.princeton.edu/~appel/modern/java/CUP/
http://jflex.de
https://web.archive.org/web/20200815170741/https://jflex.de/

Andrin Bertschi
Software Engineer

� abertschi
7 andrinbertschi
, https://abertschi.ch
Q hi@abertschi.ch
� Zurich, CH

Education
ETH Zurich Zurich, ZH
B.Sc. Computer Science 2016 - 2020

Thurgauerisch-Schaffhauserische Maturitätsschule für Erwachsene Frauenfeld, TG
High school for Adults, Passerelle 2015 - 2016

Lehre Informatiker Applikationsentwicklung EFZ1 Winterthur, ZH
Berufsfachschule Winterthur 2010 - 2014

Work Experience
AXA Winterthur, ZH
Title: Java Engineer 08/2015 - 07/2016
Java Enterprise backend development for insurance applications

AXA Winterthur, ZH
Title: Junior Java Engineer, Member of Competence Center Java 10/2014 - 07/2015
Java Enterprise and web development

AXA Winterthur and AXA Technology Services Switzerland AG Winterthur, ZH
Title: Software Engineering Apprentice 08/2010 - 07/2014
Mainframe application development on z/OS ISPF with PL/1, DB2 (2010-2012)
Backend development in Java EE (2012-2014)

Miscellaneous
Skills: Self-Reliance, Eager to Learn, Analytical Thinking, Team-Player
Areas of Interest: Compilers, Operating Systems, Program Analysis, Android
Languages: German (native), English (C1-C2), French (A1)
Non-Technical Hobbies: Powerlifting, Dancing

1Diploma Swiss Federal Vocational Education and Training in Software Development

	Contents
	Introduction
	Contributions and Scope
	Structure of this Document

	Background
	PHP Programming Language
	Graal and GraalVM
	Abstract Syntax Trees
	AST Interpreters
	Truffle

	Design & Implementation
	Design Evaluation
	Truffle-hosted Source Interpreter
	Modeling Language Features
	Remaining Language Features

	Experimental Methodology & Evaluation
	Experimental Methodology
	Evaluation

	Related Work
	Zend Engine
	Source-to-Source Compilers
	Just-In-Time Compilers
	Truffle and GraalVM

	Future Work
	Conclusion
	Appendix
	Implementing a Parser

	Graalphp Source Assets
	Evaluation Assets
	Benchmark Source Files

	Acknowledgment
	Bibliography
	Curriculum Vitae

