
OPTIMIZING RELATIONAL QUERIES OVER BIT-PARALLEL DATABASE LAYOUT

Andrin Bertschi, Nicolas Wicki

Department of Computer Science
ETH Zurich, Switzerland

Isaak Hanimann, Carl Friess

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

In light of the advances in machine learning and its depen-
dence on relational data, hardware acceleration in databases
is becoming increasingly prevalent. Given the highly par-
allel nature of arithmetic operations executed in machine
learning accelerators, specialized data layouts such as ML-
Weaving have been proposed as indexes in order to improve
the performance of bit-parallel arithmetic.

Unfortunately, these data layouts add large performance
overheads to queries executed on general purpose CPUs,
leading to data duplication, as a traditional data layout needs
to be maintained in order to allow for generic relational
queries. To address this issue, we examine various opti-
mizations to the execution of simple predicate and join queries
operating directly on the MLWeaving format. Experimental
results show that our optimized algorithms achieve runtime
improvements of up to 31.9x compared to baseline imple-
mentations.

1 Introduction
MLWeaving is a specialized data representation that facili-
tates in-memory integer data to be loaded at arbitrary levels
of precision, while optimizing the layout for cache-based
memory hierarchies and hardware accelerators that make
use of bit-parallel arithmetic units. In machine learning
applications this is particularly useful, as it allows models
to be trained using limited precision versions of relational
training data, thus saving significant memory bandwidth,
without incurring the costly overhead of storing data in mul-
tiple discrete levels of precision. MLWeaving provides a lin-
ear speedup inversely proportional to the number of bits of
precision used on hardware accelerated training using FP-
GAs.

Motivation. Although the MLWeaving format used as
an index alleviates the overheads that would be incurred by
storing data in multiple levels of precision, it is not suit-
able as a primary storage format in relational databases with
conventional execution of generic predicate-based queries.
Given that general purpose processors employ bit-serial arith-
metic, specialized algorithms are required to improve the
performance of query execution and make MLWeaving vi-

able as a primary storage format for extended applications.
Contribution. We evaluate various optimizations on

the CPU-based execution of two types of queries, directly
operating on the MLWeaving data layout. We focus on a
predicate-based query (Query 1.0), combined with an op-
tional aggregate function (Query 1.1), as well as a join query
between two relations based on a predicate including a mul-
tiplication operation (Query 2). We introduce baseline im-
plementations and discuss optimization techniques, rang-
ing from sequential optimizations to vectorized implemen-
tations based on the Intel® AVX2 extension. Finally, we
include experimental performance evaluations on relations
up to 2 GB in size.

Related work. An early attempt on a bit parallel database
layout is BitWeaving introduced by Li et al. [1]. BitWeaving
proposes a way to rearrange data in memory in order to ex-
ploit bulk bit-wise operations to achieve higher performance
on predicate-based database queries. The algorithms and
optimizations discussed in this work are based on the ML-
Weaving format, originally introduced by Wang et al. in [2].
MLWeaving is a more recent bit-parallel database layout
that builds on BitWeaving but is specifically optimized to
enable hardware accelerated machine learning on FPGAs.
To the author’s knowledge, there are no other contemporary
query execution algorithms that operate directly on the ML-
Weaving memory layout.

2 Background
In this section, we introduce the MLWeaving format at a
high-level. We then proceed to introduce the SQL queries
targeted by our algorithms, state assumptions and motivate
our cost metrics.

MLWeaving. While we refer to [2] for an elaborate
analysis of the data format, we now briefly introduce the
key structure of MLWeaving. In the scope of this introduc-
tion, we consider a relation in conventional tabular format
depicted on the left side in Figure 1. The relation has two
rows, four columns and an integer precision of 4 bits. ML-
Weaving partitions the relation into banks and cache lines.
In Figure 1 we consider a cache line of 8 bits. The cell
ABCD at index (0, 0) in the conventional data format spans

convert
 ABCD EFGH IJKL MNOP

abcd efgh ijkl mnop

col 0 col 1 col 2 col 3

row 0

row 1

AEIM aeim

BFJN bfjn

CGKO cgko

DHLP dhlp

bank 0 bank 1

bit 0

bit 1

bit 2

bit 3

Conventional

Data Format

MLWeaving

Data Format

Fig. 1. Conventional Data Format converted to MLWeaving
Data Format: Note that banks represent the number of rows
loaded in a cache line.

over four cache lines in MLWeaving. Reading the first cache
line in MLWeaving retrieves AEIM and aeim, which are the
first bits of the entries in row 0 and 1. Using this format, we
can read specific bits of multiple rows at once.

We use the term block to consider all data values in full
precision, spanning over the supported bank count. In the
example in Figure 1 a block is 32 bits in size.

Assumptions on MLWeaving. In this work, we con-
sider a cache line to consist of 512 bits, as is the case for
our target architecture (Intel® Coffee Lake). We work on
unsigned integer data relations with a precision of at most
32 bits. Further constraints on the MLWeaving memory lay-
out include:

• banks = 2i, for i ∈ {3, 4, 5, 6},
• rows = 2j , for j ∈ N>0,
• rows ≡ 0 (mod banks),
• columns ≡ 0 (mod bits per bank).
The above assumptions remove corner cases from the

query implementations. However, they can easily be relaxed
in practice.

SQL Queries. Let R, S ⊆ Nnxm be two relations of n
rows and m columns stored in MLWeaving format, with a
precision of 32 bits. Let a, b, c be columns in the relations.
This work examines the three queries presented in Listing 1.

−− Query 1 . 0
SELECT * FROM R WHERE R . a < R . b
−− Query 1 . 1
SELECT SUM(R . c) FROM R WHERE R . a < R . b
−− Query 2
SELECT * FROM R , S WHERE R . a * S . b = S . c

Listing 1. Implemented SQL Queries

Query 1.0 returns a bit vector r = {0, 1}n, where ri = 1
⇐⇒ R[i].a < R[i].b, i.e. row i fulfills the WHERE clause
of the query. Query 1.1 is an aggregation of Query 1.0 and
uses summation on column R.c. Hence, its result is a scalar
value. For Query 2 we consider a JOIN on two relations

where we output a set of matching tuples {(i, j) | i, j ∈
{1, .., n}, R[i].a ∗ S[j].b = S[j].c}.

Cost Analysis. Since we use MLWeaving to store in-
teger data and our arithmetic operations operate entirely on
integers, flops are not a relevant cost metric in our case. Fur-
thermore, a non-negligible number of integer operations are
used for address and index computations, making them dif-
ficult to isolate from other operations.

Thus, we choose runtime as our primary cost measure.
From runtime, we are able to derive throughput in MB/s
and input tuples per second for join operations. We prefer
to visualize performance using throughput metrics since this
allows us to more easily compare performance on data sets
of various sizes, especially in view of runtimes that scale
quadratically with input size.

3 Method
In this section, we present a detailed outline of the different
optimizations applied to the query executions.

3.1 Query 1.0
Recall from Section 2 that Query 1.0 is a SELECT query on
a single relation. We first introduce a baseline version, then
proceed with sequential optimizations and finally uplift the
best performing version to AVX2 intrinsics.

Implementing a Baseline. For the baseline version, we
consider two variants of possible implementations. These
variants are imposed by the data layout of MLWeaving. The
first variant processes the relation in a bank major order,
whereas the second variant uses precision major order. The
access pattern for bank major order is identified in Listing 2.

for each block in R:
for each bank in banks: 1

for each bit in precision: 2
read bit of R.a and R.b;

if a < b:
output match;

Listing 2. Query 1.0: Pseudo code for the baseline
implementation in bank major access pattern.

The second variant is analogous to Listing 2 but switches
the loop ordering of 1 and 2 to first process all banks of the
same precision.

Sequential Optimizations. We start with the standard
procedure to apply code motion, strength reduction, and
sharing of common sub-expressions. However, these op-
timizations are already applied when compiling with opti-
mization flags, as they did not result in a significant speedup.

An important optimization is what we refer to as early
termination. Recall the access pattern from Listing 2. The
bank major iteration allows for early termination of the pre-
cision loop at 2 as soon as the first bits of columns R.a and

bank 63 bank 62 bank i bank 1 bank 0

Cache line of 512 bits

a b c d e f g h

0 b 0 0 0 0 0 0a 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Fig. 2. Bit extraction and comparison on 8 bit chunks using
64 banks.

R.b differ. A similar idea can be applied to the precision
major access pattern.

Vectorization. We follow up on our scalar optimiza-
tions with an implementation using Intel® AVX2. The loop
order of this implementation is based on the precision ma-
jor access pattern of the baseline. We choose this access
pattern as the foundation for vectorization because it allows
us to directly load a cache line of 512 bits into two 256-
bit AVX2 vectors and proceed to operate on all banks at
once. We hereby provide specialized implementations for
different bank sizes1. The key idea here is to extract bits of
columns R.a and R.b in each bank, shift them to the same
position before applying a vectorized comparison of the bits
for inequality. This process is depicted in Figure 2. If the
current precision bit of R.a is smaller than R.b, we output a
match, while bookkeeping ensures that consecutive bits no
longer determine the result for that bank. The comparison
returns a mask which can be accumulated and subsequently
aggregated to a bit vector, where each bit indicates if a row
is in the result set.

Early Termination. Given the sequential order of pre-
cision bits in the MLWeaving format, we can exploit early
termination on the basis of an AVX2 vector. Recall that we
load a cache line into two 256 bit vectors. As soon as the
query is determined for all banks in both vectors, no further
precision bits need to be loaded, and we can proceed to the
next rows in the dataset. This not only reduces unnecessary
computation, but also decreases data movement.

Bank Extensions. To exploit further optimization av-
enues, we extend the implementation to different bank sizes
including 8, 16, 32, and 64 banks. Thereby, we employ
different AVX2 extensions, namely *_epi8,*_epi16,

*_epi32 and *_epi64 for packed signed integers of dif-
ferent sizes. Increasing the bank count also increases the
amount of rows processed simultaneously, which overall
leads to less unnecessary data moved. However, not all in-

1For instance, a bank size of 8 allows us to operate on 64 columns (one
bit of each column) of 8 consecutive rows.

structions are available on packed signed integers of sizes
8 to 64. To name an example, there is no shift left 8-bit
packed integers (_mm256_sll_epi8) instruction, which
is why we emulate it using a sequence of vector instructions
to work as a substitute.

Column Index Extensions. We initially assumed that
columns R.a and R.b inhabit indexes 0 and 1, which are
strong restrictions. This is why we extend the column in-
dexes to inhabit any position within the same bank. This
allows for both columns to be positioned anywhere within
the bit range of a bank2. This involves a more sophisticated
approach to the shifting process used to align columns. For
instance, if the columns inhabit the most significant bit of
the bank, we need to avoid signed integer comparison, as
the most significant bit determines the sign and hence leads
to a wrong result.

Precision Extensions. With the precision extensions,
we allow a query to only consider the first n result bits, start-
ing from the most significant bit, where n ∈ {1, 2, .., 32}.
This may, depending on the precision level, reduce data
movement drastically. Recall, however, that reducing the
result precision may lead to inaccurate results.

3.2 Query 1.1
Remember from Section 2 that Query 1.1 builds upon Query
1.0 by additionally aggregating a third column R.c using the
SUM operator. We now proceed with a similar approach by
starting with a baseline implementation, following up with
sequential optimizations, and finally applying vectorization
supporting different bank sizes, column indexes and result
precision. However, due to similarities to Query 1.0 we ded-
icate most of this section to the aggregation process of the
Query 1.1.

Baseline Implementation. We consider both access
patterns in bank major and precision major order and keep
track of an accumulator to capture the sum of R.c. The pat-
tern for bank major is summarized in Listing 3.

result = 0;
for each block in R:

for each bank in banks:
for each bit in precision:

read bit of R.a, R.b and R.c;
if a < b:

result += c;

Listing 3. Query 1.1: Pseudo code for the bank major
access pattern.

Sequential Optimizations. Sequential optimizations in-
clude code motion, strength reduction, and sharing of com-
mon sub-expressions. Early termination as introduced in
Query 1.0 cannot be exploited in this query because the full
result precision of R.c is needed for aggregation. However,

2For a bank size of 8, the range is 64 bits.

we can stop data reads on R.a, and R.b as soon as their bits
differ, which reduces the pressure on registers.

Vectorization and Aggregation. For vectorization, we
consider specialized implementations for different bank sizes
ranging from 8 to 64 banks. Analogous to Query 1.0, we
”unroll” the bank loop in the precision major access pattern
and operate on two 256-bit AVX2 vectors. We apply early
termination on R.a, and R.b but still need to read out R.c in
full result precision. The key idea behind aggregation is to
employ two integer-packed AVX2 vectors as accumulators.
They restore the integer values of R.c, where each precision
bit is shifted to the bit position of the original integer in R.c.

Bank Extensions. To support aggregation on banks of
size 32 and 64, two accumulators no longer have enough ca-
pacity to restore the original integer in R.c. For 32 banks, an
accumulator only dedicates 16 bits to a single bank. In this
case, we represent 32-bit integers using two 16-bit integers.
This is implemented analogously in the case of 64 banks.
Using shifts, we can reproduce the original value of R.c and
in the end aggregate in a scalar.

3.3 Query 2
Query 2 introduces a JOIN condition used to join two rela-
tions. We will start by introducing our baseline implementa-
tion, then describe the applied sequential and vectorization
optimizations. Finally, we also discuss early termination
and an extension that allows for arbitrary result precision.

Baseline Implementation. Our algorithm implements a
simple nested-loop join to evaluate the join condition of the
query. For the baseline, we first iterate over each row of the
relation S in order to read one value each from the columns
b and c in full precision. Then, for each row of S, we iterate
over each row of the relation R and read the corresponding
value of the column a in full precision. Finally, we check
the join condition as shown in Listing 4. If a match is found,
we output a tuple containing the row indices of the matching
rows in R and S.

for each row in S:
read one S.b and S.c value;
for each row in R:

read one R.a value;
if R.a * S.b == S.c:

output match;

Listing 4. Query 2: Baseline implementation.

Improved Cache Locality. Given the nature of the ML-
Weaving memory layout, we were able to significantly im-
prove the temporal locality of our algorithm by interleaving
the loading of as many rows as there are banks (see 1 and
2 in Listing 5). A cache line is loaded into the cache when
we access the first bank in the cache line. Given that in ML-
Weaving a single cache line will contain bits from as many
rows as there are banks, the bits from subsequent banks (and
thereby subsequent rows) will already be available in the

cache. The improvement in temporal locality comes from
immediately reading the bits of subsequent rows prior to
moving on to the next bit of precision of the same row.
As a result, we now iterate through the relations linearly
in blocks rather than non-linearly row-by-row. Beyond im-
proving cache efficiency, this should also aid prefetching.

for each block in S:
read 8 full precision S.b and S.c values; 1
for each block in R:

read 8 full precision R.a values; 2
for each combination of rows in R and S:

if any R.a * S.b == S.c:
output match;

Listing 5. Query 2: Improved temporal cache locality.

Bit-parallel multiplication. Next, we attempted to fit
all computations into the time spent waiting for memory re-
quests by applying bit-parallel shift-and-add multiplication
between each load. We do this by first reading eight S.b and
S.c values 1 , then reading R.a bit by bit 2 while adding up
the intermediate result of the multiplication in accumula-
tors 3 . We illustrate the implementation in Listing 6. Early
benchmarking results revealed that performance was signif-
icantly worse. This is because multiplication already has
quite high throughput (0.66 ops/cycle) and low latency (5
cycles) and the implementation of bit-parallel multiplica-
tion required much more instructions. Thus, we decided to
abandon this approach.

for each block in S:
read 8 full precision S.b and S.c values; 1
initialize accumulators
for block in R:

for each bank in cache line:
read one bit of each R.a; 2
if bit == 1

shift all S.b’s and add to
accumulators 3

for each accumulator:
if any accumulator == S.c:

output match;

Listing 6. Query 2: Bit-parallel multiplication.

Further Sequential Optimizations. We achieved fur-
ther performance improvements by applying code motion
and strength reductions. In particular, we were able to sig-
nificantly simplify memory address calculations.

Before vectorizing our implementation, we decided to
fix the number of banks to eight and relation precision to
32 bits at compile time. These fixed values provided a ba-
sis for our vectorized implementation, as they were selected
specifically given that AVX2 vectors consist of 256 bits,
which in our case store eight 32-bit integer elements.

Vectorization. Similar to our sequential implementa-
tion, we load eight rows from each relations at a time, such
that we obtain eight-element vectors for each column R.a,

S.b and S.c. The key idea behind our vectorized implemen-
tation is to shift the elements in the R.a vector to produce
eight different permutations before applying element wise
multiplication resulting in the 64 different combinations of
the rows loaded from both relation.

for each block in S:
read 8 full precision S.b and S.c values;
for each block in R:

read 8 full precision R.a values;
for i in 0..7:

shift R.a elements by i;
if any R.a * S.b == S.c:

output matches;

Listing 7. Query 2: Vectorized implementation.

To load the operands from each relation, we read a full
cache line (512 bits wide) into two AVX2 vectors (each 256
bits wide) and merge them using shuffle and blend opera-
tions such that we obtain a single AVX2 vector that contains
the relevant bits for each of the eight rows contained in the
cache line. As we load the next cache line, we shift each
partial operand and combine them using an or operation.

In order to evaluate the join condition, we need to check
all combinations of the rows loaded from R with the rows
loaded from S. We shift the R.a vector seven times to obtain
eight different permutations of the elements in the vector.
By subsequently multiplying the S.b vector with all eight
versions of the R.a vector and comparing the result to the
S.c vector, we can evaluate all 64 combinations using only
eight loop iterations.

We chose to shift the R.a vector rather than the S.b vec-
tor in order to prevent having to execute the shift operations
on S.c as well.

Loop Unrolling. After vectorizing the implementation,
we were able to further reduce data dependencies and apply
some loop unrolling, yielding a moderate performance im-
provement. In particular, we fully unrolled the loop used to
generate and evaluate the eight different versions of the R.a
vector.

Early Termination. Given that each bit of precision is
loaded sequentially, we have the opportunity to terminate
this loading process early if we can determine that none of
the values being loaded will lead to a match. By reversing
the order in which we load bits and start with the least sig-
nificant, we can rule out matches with a subset of the bits.

However, we observe that checking the join condition is
expensive, as it involves a lot of arithmetic and logic opera-
tions and needs to be repeated eight times to cover all com-
binations. As such, it is impractical to check for matches
every time we load another bit. Instead, we evaluate the
join condition after s bits have been loaded (see 1 in List-
ing 8). The probability of terminating is thus higher and the
check is more likely to be worth it. If any of the 64 results
indicate a possible match, we proceed to load the remaining

0 4 8 12 16 20 24 28 32
0.5

0.6

0.7

0.8

0.9

1 4096 rows
32768 rows
49152 rows
65536 rows
98304 rows
131072 rows

Query 2 Early Termination Trade-Off - Coffee Lake i9-9880H
(normalized runtime)

split

Fig. 3. Normalized runtime for each split factor. The verti-
cal lines show the best split factor for each of the data set
sizes. Lower is better.

bits for all operands 2 .

for each block in S:
read 8 full precision S.b and S.c values;
for each block in R:

read lowest s bits of 8 R.a values; 1
for each shifted R.a vector:

if any mask(R.a * S.b) == mask(S.c):
read remaining bits for R.a; 2
for each shifted R.a vector:

if any R.a * S.b == S.c:
output match;

break;

Listing 8. Query 2: Early Termination.

To determine the right split factor, s we benchmarked
different split factors for data sets of various sizes. The re-
sults are shown in Figure 3. As one can see, if we check
too early (small split factor) the probability of being able to
terminate is low and thus the early termination check wasn’t
worth it. Conversely, if we check too late (large split factor)
too many bits are loaded unnecessarily.

In our data set distribution, the probability of a match is
dependent on the number of rows. As expected, we observe
a general trend: the more rows, the higher the ideal split
factor. For smaller data sets the best split factor is 14, while
for larger data sets it is 19.

Arbitrary Input Precision. An important observation
for implementing arbitrary precision for Query 2, is that re-
sults change based on precision, and you need to generate
custom data to keep result size under control with low input
precisions.

The implementation is straight forward: one can simply
stop reading R.a’s, S.b’s and S.c’s after desired precision
many cache lines instead of always reading 32 cache lines.

4 Experimental Results
In this section, we turn to three series of experiments which
we conducted to evaluate the different optimizations. We
state the experimental setup and detail the data generation
process. We first present benchmark results for Query 1.0,
proceed with Query 1.1 and finally discuss Query 2.

Experimental Setup. We execute all benchmarks on a
MacBook Pro (Darwin 20.5.0, Big Sur 11.3, 16-inch, 2019)
using an Intel® Coffee Lake i9-9880H, clocked at 2.3 GHz
with an L3 cache of 16 MB, and 16 GB RAM. We dis-
able Turbo Boost and restart the device before executing all
benchmarks. All queries are compiled with Apple® clang
version 12.0.5, using flags -O3 and -march=native.
Benchmarks are executed using the Google Benchmark [3]
framework (version 1.5.4). Google Benchmark features au-
tomatic iteration estimation, which dynamically ensures a
statistically stable result [4].

Generating Data. For Queries 1.0 and 1.1, we gather
benchmark results on relations of different row counts up to
2 GB in relation size, with 512 columns. Tuple data is gen-
erated uniformly at random in 32 bit precision. For Query
2, we generate two relations with 64 columns each and the
same number of rows. Given the quadratic runtime associ-
ated with nested-loop join algorithms, we caped the data set
size at 64 MB. Although this is a relatively small data set, it
is still much larger than the L3 cache on the target processor.

Evaluation Metric. As motivated in Section 2, plots
presented in the preceding sections use throughput in either
MB/s or input tuples/s. The x-axes detail different sizes of
the data set, while the y-axes indicate throughput of the var-
ious implementations. When stating speedup relative to a
baseline, we refer to dataset sizes of 2 GB for Query 1.0
and 1.1. In the case of Query 2, we use a dataset size of 32
MB.

4.1 Results Query 1.0
In this section, we discuss the performance results of the
first query when applying optimizations discussed in Sec-
tion 3.1. If not otherwise stated, all experiments use column
index 0 for R.a and 1 for R.b. Banks and precision are fixed
at 8 and 32 respectively.

Optimizations. In Figure 4, we show the optimizations
for Query 1.0. The baselines precision major and bank ma-
jor achieve a comparable throughput. stdc using early ter-
mination delivers a noticeable performance improvement of
2.17x when compared to the bank major baseline. By ter-
minating the precision loop early, data movement is reduced
significantly. The vectorized implementation vect. 8 banks
increases the throughput up to a factor of 3.51. Supporting
arbitrary col. indexes using index 383 for R.a and 320 for
R.b introduces some overhead, however, it allows for more
flexibility in real-world applications, while still maintain-
ing a performance gain of 3.11x. Increasing the amount of

2 2 2 2 2 2 2 2 2 2
0

0.2M

0.4M

0.6M

0.8M

1M

Query 1.0 Optimizations - Coffee Lake i9-9880H
Throughput [MB/s]

Size of Dataset [MB]bank major
precision major

stdc
vect. 8 banks

col. indexes vect. 16 banks

vect. 32 banks

vect. 64 banks

2 3 4 5 6 7 8 9 10 11

Fig. 4. Different optimizations applied for Query 1.0. L3
cache of 16 MB is marked with a vertical line. Higher is
better.

2 2 2 2 2 2 2 2 2 2
0

100k

200k

300k

400k

500k

600k

700k

800k

2 3 4 5 6 7 8 9 10 11

Query 1.0 Precision - Coffee Lake i9-9880H
Throughput [MB/s]

Size of Dataset [MB]

1 bit

2 bits

4 bits

6, 8, 16,32 bits

Fig. 5. Different result precisions applied to Query 1.0. L3
cache of 16 MB is marked with a vertical line. Higher is
better.

banks delivers a linear speedup up to 32 banks with vect.
32 banks further improving the throughput up to a factor of
11.67x. The fully optimized version using 64 banks (vect.
64 banks) finally advances to a speedup of 19.13x with a
slight deviation in the linear trend caused by the overhead
of emulation as mentioned in Section 3.1. The throughput
drops with increasing dataset size, and stabilizes at 128 MB.

Precision Extensions. In Figure 5, we observe that
the fewer bits we use to evaluate the query, the higher the
throughput. The throughput increases significantly once we
reach fewer than 6 bits, as early termination already mini-
mizes the amount of bits moved dependent on the distribu-
tion of the data3. Note the drastic drop in throughput, once
the dataset reaches a size greater than 16 MB (L3 cache),

3Normal distribution increases the chance of termination by 50% for
each bit read.

2 2 2 2 2 2 2 2 2 2
0

50k

100k

150k

200k

250k

Query 1.1 Optimizations - Coffee Lake i9-9880H
Throughput [MB/s]

Size of Dataset[MB]

bank major

precision major
stdc

vect. 8 banks

col. indexes

vect. 16 banks

vect. 32 banks

vect. 64 banks

2 3 4 5 6 7 8 9 10 11

Fig. 6. Different optimizations applied for Query 1.1. L3
cache of 16 MB is marked with a vertical line. Higher is
better.

which converges at around 256 MB.

4.2 Results Query 1.1

In this section, we assert the performance results of Query
1.1 when applying the optimizations discussed in the pre-
vious sections. If not otherwise stated, all experiments use
column index 0 for R.a, 1 for R.b, and 2 for R.c. Banks and
precision are again fixed at 8 and 32 respectively.

Optimizations. In Figure 6, the baselines for bank ma-
jor and precision major perform similarly as in Figure 4.
We further establish that stdc with sequential optimizations
is outperformed by the -O3 compiler optimizations. This
can be attributed to manually introduced optimization block-
ers. However, when using the vect. 8 banks optimization
we achieve a speedup of 2.16x over the bank major base-
line. The support of various column indexes using indexes
383 for R.a, 321 for R.b, and 320 for R.c in col. indexes
introduces some overhead, but still delivers a speedup of
1.92x. The throughput increases linearly with the increase
in banks again up to vect. 32 banks with a speedup of 7.45x.
However, the implementation vect. 64 banks interrupts this
trend with a speedup of 8.14x where the emulation of vector
instructions as described in Section 3.2 becomes prevalent.
We experience a considerable performance drop when com-
pared to Query 1.0 caused by the lack of early termination.

Precision Extension. In Figure 7, we identify a de-
creasing throughput the more bits we use to evaluate the
query. However, in contrast to the results presented in Fig-
ure 5, we notice that the throughput linearly decreases with
the increase in precision as early termination cannot be ap-
plied. Again, a drop in throughput is visible when exceeding
a dataset size of 16 MB.

2 2 2 2 2 2 2 2 2 2
0

100k

200k

300k

400k

Query 1.1 Precision - Coffee Lake i9-9880H
Throughput [MB/s]

Size of Dataset[MB]

1 bit

2 bits

4 bits

6 bits

8, 16,
24, 32 bits

2 3 4 5 6 7 8 9 10 11

Fig. 7. Different result precisions applied to Query 1.1. L3
cache of 16 MB is marked with a vertical line. Higher is
better.

0 8 16 24 32 40 48 56 64

50M

100M

150M

200M

250M

300M

Baseline
Load full blocks S
Load full blocks S & R
Code motion
Fix precision and banks

Query 2 Sequential Performance - Coffee Lake i9-9880H
Throughput [input tuples/s]

Size of Dataset [MB]

L3 cache (16MB)

Fig. 8. Query 2: Throughput of all sequential implementa-
tions. Higher is better.

4.3 Results Query 2
Sequential Optimizations. Figure 8 shows that reading the
entries in batches to increase temporal locality achieves a
significant speedup of 7.4x. We also notice, that as the data
set grows beyond the L3 cache size (16 MB) we experience
a small drop in performance. Furthermore, defining the pre-
cision of the values stored in the relations and the number
of banks at compile time as discussed above, significantly
boosts throughput and is our best sequential implementa-
tion, as various optimization blockers for the compiler are
removed.

Vectorization. Figure 9 compares multiple vectorized
implementations to the best sequential implementation (red
line). The plot illustrates well why choosing the ideal split
factor is important. The early termination benchmarks in
Figure 9 are run using a constant split factor of s = 14. For
larger data sizes (e.g. 64 MB) the ideal split factor is 19, not
14. Therefore, the performance of early termination for this

0 8 16 24 32 40 48 56 64

0.4B

0.6B

0.8B

1B

Fix precision and banks
Vectorized
Reduce data deps & early term eval
Loop unrolling
Early termination (split 14)
Early termination & loop unrolling

Query 2 Vectorized Performance - Coffee Lake i9-9880H
Throughput [input tuples/s]

Size of Dataset [MB]

L3 cache (16MB)

Fig. 9. Query 2: Throughput of vectorized implementa-
tions. Constant split factor s = 14 for early termination.

0 8 16 24 32 40 48 56 64

0.4B

0.6B

0.8B

1B

1.2B

Query 2 Arbitrary Input Precision (Seq.) - Coffee Lake i9-9880H
Throughput [input tuples/s]

Size of Dataset [MB]

L3 cache (16MB)

1 bit

8 bits

16 bits
24 bits
32 bits

Fig. 10. Query 2: Throughput with arbitrary precision on
our best sequential implementation. Higher is better.

data size turned out worse than not using early termination
at all. Nonetheless, it is clear that when the split factor is
well tuned, the implementation with early termination pro-
vides the best performance.

Arbitrary Precision. Figure 10 establishes that the through-
put of our fastest sequential version improves linearly with
decreasing precision. Similarly, Figure 11 shows that the
throughput of our fastest vectorized version also improves
with decreasing precision. However, it isn’t quite linear.

Performance Summary. Table 1 summarizes the im-
provements in throughput for all major steps in our journey
optimizing Query 2.

5 Conclusions
In this work, we explored and applied various sequential and
vectorized optimizations to significantly improve the perfor-
mance of queries executed directly on the MLWeaving data
format. Our experimental evaluations show throughput im-
provements of up to 19.13x for Query 1.0, 8.14x for Query
1.1, and 31.9x for Query 2. Further performance improve-

0 8 16 24 32 40 48 56 64

0.5B

1B

1.5B

2B

Query 2 Arbitrary Input Precision (Vec.) - Coffee Lake i9-9880H
Throughput [input tuples/s]

Size of Dataset [MB]

L3 cache (16MB)

1 bit

8 bits
16 bits
24 bits
32 bits

Fig. 11. Query 2: Throughput with arbitrary precision on
our vectorized implementation. Higher is better.

Baseline 1.0x
Load full blocks S 7.4x
Fix precision and banks 13.1x
Vectorized 18.7x
Reduce data deps and early term eval 24.4x
Loop unrolling 26.6x
Early termination 29.7x
Early termination and loop unrolling 31.9x

Table 1. Speedup summary of Query 2.0 with a dataset size
of 32 MB.

ments can be achieved when using reduced input precision
in all cases.

We consistently found leveraging the cache-aware na-
ture of MLWeaving and early termination to be powerful
optimizations in evaluating these queries. The predicate-
based queries with additional aggregation benefit drastically
from an increased amount of banks, while still providing
reasonable flexibility in their column choices. However, an
even more generalized approach would be of interest in real-
world applications, and a potential involvement of early ter-
mination in the aggregation approach might nonetheless be
viable. In the case of the join query, the success of early ter-
mination is dependent on accurate tuning of an additional
parameter. We see room for future work to show how this
parameter can be effectively set by heuristics based on query
optimization information provided by a database engine.

Overall, this work successfully shows that with special-
ized query execution, data formats optimized for hardware
accelerators can be used as primary storage formats in gen-
eral purpose database applications with reasonable perfor-
mance constraints. We leave the generalization to more
complex query types for future work.

6 Contributions of Team Members
We split our team into two groups to more easily distribute
the workload. We frequently updated our progress and ex-
changed acquired insights.

Andrin Bertschi. Worked together with Nicolas on op-
timizations for Query 1.0 up to 8 banks, proceeded to ap-
ply optimization for bank variant 32. Focused on result ag-
gregation in Query 1.1. Implemented arbitrary columns for
banks 16 and 32. Applied arbitrary result precision in Query
1.0.

Nicolas Wicki. Worked together with Andrin on opti-
mizations for Query 1.0 up to 8 banks, and continued with
implementing bank variants for 16 and 64 banks. Also, pro-
vided implementations for arbitrary columns with 8 and 64
banks. Applied arbitrary result precision for Query 1.1.

Isaak Hanimann. Focused on adapting the algorithm
to use bit-parallel multiplication, as well as some sequential
optimizations and early termination using the bit-parallel
multiplication approach. Implemented the arbitrary preci-
sion extensions for the sequential and vectorized versions
of Query 2.

Carl Friess. Implemented the baseline for Query 2, as
well as some sequential optimizations. Mostly focused on
the vectorized version of the algorithm and exploring av-
enues for making use of early termination in Query 2. Im-
plemented the early termination approach using a split fac-
tor and evaluated the trade-off in selecting the optimal split
factor.

7 References
[1] Yinan Li and Jignesh M. Patel, BitWeaving: Fast Scans

for Main Memory Data Processing, SIGMOD, 2013.

[2] Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo
Alonso, Onur Mutlu, and Ce Zhang, Accelerating Gen-
eralized Linear Models with MLWeaving: A One-Size-
Fits-All System for Any-Precision Learning, PVLDB,
2019.

[3] Google, “Google Benchmark, A library to bench-
mark code snippets, similar to unit tests,” https:
//github.com/google/benchmark, Accessed
on 21-06-25.

[4] Google, “Runtime and Reporting Consid-
erations in Google Benchmark,” https:
//github.com/google/benchmark#
runtime-and-reporting-considerations,
Accessed on 21-06-25.

https://github.com/google/benchmark
https://github.com/google/benchmark
https://github.com/google/benchmark#runtime-and-reporting-considerations
https://github.com/google/benchmark#runtime-and-reporting-considerations
https://github.com/google/benchmark#runtime-and-reporting-considerations

	Introduction
	Background
	Method
	Query 1.0
	Query 1.1
	Query 2

	Experimental Results
	Results Query 1.0
	Results Query 1.1
	Results Query 2

	Conclusions
	Contributions of Team Members
	References

