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ABSTRACT
This work addresses the problem of 3D human pose estimation
given solely monocular RGB images and is part of the Machine
Perception course at ETH Zurich during Spring Semester 2021.
Given a 2D RGB image of a human body, the goal for project 2 was
to predict the 3D coordinates of 17 body joints. A preprocessed
version of the Human3.6M dataset [3] was provided for training
and validation with ground-truth 3D pose annotations, as well as
MPII [1], a dataset which contains in-the-wild human images with
2D pose annotations. We explored several different paths and meth-
ods making usage of Deep Learning and ran various experiments
to validate the different approaches. For an additional comparison,
we compare our results to a method exploiting the multi-view prop-
erty of the Human3.6M dataset which was not allowed as a valid
submission, but further shows the potential of such a method. With
single monocular images we achieved a final MPJPE of 60.82mm,
whereas by using the multi-view property we achieved 37.65 mm.
These preliminary results suggest that multi-view geometry can
significantly improve the accuracy for human pose estimation.

1 INTRODUCTION
Detecting 3D human poses from static RGB images has received
increased attention in many fields including robotics, human com-
puter interaction and autonomous driving and has many appli-
cations in a variety of domains. Thanks to the advent of neural
networks, especially Convolutional Neural Networks (CNNs), sig-
nificant progress has been made in recent years in improving the
estimation of 3D poses from RGB images.

Existing methods in this area are either regression based or
detection based. Detection based methods try to predict a likelihood
heatmap for each joint and localize the joint as the point with the
maximum likelihood in that map. Such likelihood maps are often
referred to as "heatmaps" and there exist methods for both 2D and
3D heatmap estimation. These heatmaps have often a very low
resolution (i.e. 64x64 or 80x80), which leads to a certain amount of
quantization error for the prediction. Using heatmaps with higher
resolution helps to increase the accuracy, but it is computationally
heavier and requires more memory, especially for 3D heatmaps.

Human pose estimation in this setting is essentially a regression
problem, as we try to regress the 3D locations of certain joints in the
euclidean space given only raw image pixels from an RGB image.
In order to infer the 3D pose from an image, the method should be
invariant to a number of different factors, including background
noise, variations in lighting condition and human body shape and
size, different clothing textures, skin color, and different degrees
of image noise, among many other factors. Further, the human
body has a tremendous number of different positions it can take
on, which makes 3D pose estimation in-the-wild a very hard task
in the domain of Computer Vision.

This work is structured as follows: First, we introduce the differ-
ent methods we looked at and implemented in order to be able to
evaluate their performance. Next, we compare the different meth-
ods based on MPJPE, a widely used metric which reports the root-
aligned mean per joint position error in millimeter. We conclude
with a discussion of the respective performances and final remarks
with our findings for this problem setting.

2 METHODS
We explored several methods as part of this project, which led us
to different approaches for the final 3D estimation problem. The
different methods are briefly discussed in this section.

2.1 Two-Stage Pipeline
In this approach, we first estimate 2D poses as an intermediate
step. The 2D poses are learned separately in a supervised manner
by a neural network together with its ground-truth 2D labels (in
pixel space). The predicted 2D poses are then used to train a second
neural network to "lift" the 2D predictions to 3D by estimating the
depth of each joint given its 2D prediction. The results are then
back projected to the camera or world space.

2.1.1 2D Predictions. We have explored several different archi-
tectures to tackle this task. To obtain a 2D prediction, a "Stacked
Hourglass" architecture as proposed by Newell et al. [5] showed the
best performance overall and was used by many recent architec-
tures focusing on the uplifting part from 2D to 3D space [2, 9, 10].
The Stacked Hourglass (SH) model consists of multiple "hourglass"
modules concatenated together, where each hourglass module con-
sists of multiple convolutional and max pooling layers to bring the
features down to a low resolution (the bottleneck layer), followed
by layers that upsample the low resolution latent representation up
to the original input size. Additionally, at the layers with the same
resolution, skip connections are used to better preserve features
at a given scale and improve the learning phase. The hourglass
module as introduced by [5] is shown in Figure 1.

Figure 1: Illustration of an hourglass module as proposed by
the Stacked Hourglass (SH) network of [5]

The hourglass network is designed to capture features of the body
at different scales and simultaneously develops an understanding
of the full body and the relationship between the body parts. It



Martin Bucher, Valentin Weiss, and Andrin Bertschi

outputs a 64 x 64 heatmap for each joint containing an estimate for
the joint’s 2D position within a patch of the input image, marking
the likelihood map for a certain joint location. For the heatmaps, a
Mean-Squared Error (MSE) loss is applied comparing the predicted
heatmap to its ground-truth heatmap consisting of a 2D Gaussian
(with standard deviation of 1 px) centered around the joint location.
For the input resolution for this network we opted for a 256x256
pixel patch centered around the human subject. This center is given
by the metadata of the Human3.6M and MPII datasets [1, 3]. To get
an estimation of the 2D coordinates in pixel space, the argmax of
the likelihood map is taken. We explored the stacking of different
numbers of Hourglass modules and found 𝑁 = 2 and 𝑁 = 8 most
effective for our setting.

2.1.2 3D Predictions. Given a set of 17 heatmaps containing 2D
predictions of each joint, the task here is to "lift" these 2D predic-
tions to 3D by estimating the depth of the joint location in 3D space.
This task aims to learn a function 𝑓 : R2𝑛 → R3𝑛 for 𝑛 = 17 joints
in our case. We implemented the 2D to 3D uplifting as outlined
in the work of Martinez et al. [4], making use of a simple neural
network architecture with two subsequent blocks of a dense lin-
ear layer with dimension 1024 followed by batch normalization,
a ReLU activation, and a dropout layer. This simple architecture
performs surprisingly well for this 2D to 3D prediction task. Each
joint coordinate is first normalized across the entire dataset by sub-
tracting the mean and dividing by the standard deviation of the data
distribution of that specific joint coordinate. We hence normalize
all coordinates independently, feed it through the network, and
denormalize the joints before performing a subsequent validation
or test phase. We experimented with both an L1 and L2 loss over
the Mean-Squared Error (MSE) of the 3D predictions.

Figure 2: Simple Baseline (SB): 2D to 3D uplifting neural net-
work as proposed by Martinez et al. [4]

2.2 Leveraging Multi-View Geometry
The provided H36m dataset is curated such that we have four image
correspondences for every capture of a human subject perform-
ing a certain action. This property can be leveraged by applying
basic knowledge about multi-view geometry to further guide the
training process in the 2D heatmap prediction stage. Our attempt
for this is derived from the Cross-View neural network from the
work of Qiu et al. [6], where they feed different camera views of the
same person into a CNN architecture to obtain four 2D heatmap
predictions, belonging semantically together. They further intro-
duce a Fusion Layer to fuse different heatmap correspondences
together, which increases the performance of the 2D predictions.
We implemented their approach for our own heatmap prediction
pipeline, hoping to improve the precision of our 2D predictions
compared to the Stacked Hourglass prediction, especially as they

also experimented by using 80x80 heatmap resolutions compared to
64x64 resolutions. Further, the whole heatmap prediction network
is end-to-end learnable.

Figure 3: Cross-view fusion for 2D pose estimation as intro-
duced by Qiu et al. [6]

Their method uses a ResNet-152, pretrained on ImageNet, as its
backbone and the input image size is either 320x320 or 256x256 pix-
els. For the 3D uplifting, the authors introduce a Recursive Pictorial
Structure Model (RPSM) to recover the 3D pose from multiple 2D
poses of the same scene. RPSM is able to dramatically reduce the
average error for the joints predictions, and although we would not
be allowed to use this method we thought it would be an interesting
avenue to approach in order to compare it to other methods for
this project. This method is stronger for joints which are occluded
from one perspective, but visible from others, which is often the
case for the wrist joints.

2.3 Integral Regression
An interesting approach tries to bridge the gap between heatmap
representation and joint location regression and was proposed by
Sun et al. [8]. Most works (including the previously introduced ones)
are either detection based (i.e. heatmaps) or regression based (hence
predicting the 3D coordinates directly). The predictions based on
heatmaps usually take the argmax of a given probability map, where
the confidence is the highest. This argmax has the drawback that
its function is not differentiable. By taking the expectation value of
the probability map instead of its maximum (also called softmax
in other literature), the joint is estimated as the integration of all
locations in the heatmap. A joint is hence estimated as the integra-
tion of all locations in the heatmap, weighted by their (normalized)
probabilities. In discrete space, this can be expressed as:

𝐽𝑘 =

𝐷∑
𝑝𝑧=1

𝐻∑
𝑝𝑦=1

𝑊∑
𝑝𝑥=1

𝑝 ∗ 𝐻𝑘 (𝑝)

Where D, H, and W are the dimensions of the heatmap 𝐻𝑘 (i.e.
its resolution) for the joint 𝐽𝑘 and 𝐻𝑘 (𝑝) denoting the probability
of of the joint being at location 𝑝 . We further denote this method
as IR in the subsequent text.
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Figure 4: Samples from the validation set using approach (E). Green are the ground-truth joints locations and Blue are the
predicted locations.We can clearly see that for themost right image, wherewe have a rather easy pose, the prediction performs
better than for more complex poses such as the one on the left and in the middle.

3 EVALUATION
For the evaluation of the previously defined methods, we used
the provided datasets Human3.6M and MPII. For Human3.6M, the
training dataset has 40896 samples containing subjects 1, 5, 6, 7. For
MPII, the training set consists of 22246 samples. For validation in
order to prevent overfitting, we used the Human3.6M validation
set containing 8140 samples of subject 8. As a last step for the
final evaluation metric, the trained models are evaluated on the
test set, containing 8608 RGB images from the Human3.6M dataset
(subjects 9, 11), having some camera properties but no ground-
truth labels available. For project submission, we predict the 3D
coordinates of 17 body joints for each sample, resulting in a total
of 51 coordinates for each of the 8608 samples from the test set.
The evaluation metric for this project is the root-aligned mean
per joint position error (MPJPE) in millimeter which is computed
as follows: 1) first, the predicted coordinates are translated to the
original image coordinates. 2) next, by using the camera intrinsics
and the ground-truth root (pelvis) depth, the image coordinates
are projected back to the camera space. 3) both the predicted key-
points and the ground-truth labels are aligned relative to their root
(hence subtracting the 3D root pelvis coordinates from all joint
coordinates). 4) for each joint, the per-joint L2-norm is computed
and the mean for each sample computed. Then, the global mean is
computed over all samples:

𝑀𝑃 𝐽𝑃𝐸 =
1
𝑀

𝑀∑
𝑖=1

∥𝑝𝑖 − 𝑝𝑖 ∥

Where 𝑝𝑖 is the ground-truth joint location, 𝑝𝑖 is the predicted
joint location in the root-aligned euclidean 3D space, and𝑀 is the
total number of samples. The norm here is defined to be the L2-
norm. The results for the test set of the Human3.6M dataset are
reported in Table 1.

We take the provided boilerplate code (A) as a baseline and
improved step by step upon it. Using data augmentation (B) by
performing random flipping and rotation for the provided training
dataset only helps to decrease the error by a fraction. Approach
(C) implements the work ’Simple Baseline’ by Martinez et al. [4]
and takes ground-truth 2D labels for the training of a 3D regres-
sion. Approach (D) and (E) use a two-stage approach where the

RGB image is first fed into a self-trained Stacked Hourglass (SH)
model for a 2D prediction, which is then normalized and fed into a
Simple Baseline (SB) model for the 3D regression. For (D), we take
the full output of the SB method for the submission. For (E), we
extract only the depth coordinate but keep the x and y-coordinates
from the SH output (which was fed into the SB model for the 3D
uplifting) before transforming back to the camera space. For (F)
and (G), we evaluated the performance of the Integral Regression
(IR) model where for (F) we took the full prediction from the IR
model and for (G) we only extracted the x, and y-coordinate from
the IR output, but used additionally the SH model together with the
SB model for an uplifting and estimation of the depth coordinate.
This method uses at the end three trained models, but doesn’t use
any ensemble techniques. (G) showed the best results so far for us,
and we argue that it may be the most robust model from all the
ones we experimented with. By further exploiting the properties
of the Human3.6M dataset and considering its multi-view setting,
where we have multiple RGB images from the same action taken at
different angles, we were able to even further reduce the MPJPE by
a large margin for (H). Unfortunately, this last submission is not
considered as a valid submission within the context of this project
and we noticed this too lately before the final deadline of project
2. Regardless the invalid submission, we thought it is worth to be
mentioned that we could roughly reproduce the results from [6],
reporting around 27mm for their MPJPE on the Human3.6M test
dataset.

4 DISCUSSION AND CONCLUSION
Within this project, we were able to reproduce the results of multi-
ple state-of-the-art methods from the past few years, namely for
the Stacked Hourglass (SH), Simple Baseline (SB), and Cross-View
method. It is interesting to see that method (E) — where we only
extract the z-coordinate (i.e. the depth) form the 3D regression —
showed better results than for (D), where we took the full coor-
dinates from the regression output. We think this might be due
to the MSE loss, which is minimized during learning, but intro-
duces further noise for the final predictions. As the Simple Baseline
method uses a simple L2-loss term for their learning, we tried to
come up with a more restricted loss term making usage of certain
bone length priors such as the one proposed in [7], which proposes
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Table 1: Results on the Human3.6M test set as reported by
the submission webpage for project 2, GT: Ground Truth, SB:
Simple Baseline, SH: Stacked Hourglass, IR: Integral Regression

Method MPJPE (mm)

(A) Baseline (x, y, z) 149.81

(B) Baseline with data augmentation (x, y, z) 132.02

(C) GT −→ SB (x, y, z) 71.68

(D) SH −→ SB (x, y, z) 72.54

(E) SH (x, y) −→ SB (z) 64.02

(F) IR (x, y, z) 63.26

(G) IR (x, y) + SH −→ SB (z) 60.82

(H) Cross-View (x, y, z) 37.65

a structure-aware regression approach considering the connection
between certain joints and defining a relative loss between different
joints. However, we were not able to reproduce the same low error
as they reported.

Performing 3D Human pose regression solely from monocular
RGB images is not a trivial task, especially under occlusion and
when multiple people are in the scene, such as for in-the-wild RGB
images. Making use on a prior for the connections of different joints
makes intuitively sense and it would be interesting to see how such
a constrained loss term would improve the performance for 3D
Human Pose estimations in more complex environments. Further,
with the advent of larger and more complex datasets and the wider
adoption of RGB-D systems, it will be interesting to see how the
estimation of 3D Human poses will improve in the upcoming years.

A FINAL SUBMISSION
For our final submission, we decided to go with the method with
the second lowest submission score on the project page. Our lowest
score marks clearly method (H), where we implemented a network
exploiting the property of multi-view geometry, but does not mark
a valid submission. The approach with the second lowest MPJPE
uses a combination of three self-trained networks, namely a Stacked
Hourglass network, a Simple Baseline network, and an Integral Re-
gression network. This combination does not mark an ensemble,
but acts as a multi-stage pipeline: First, we trained the Stacked
Hourglass network on both Human3.6M and MPII the same way as
described in [5] in terms of data augmentation and normalization
of the input patch of size 256x256. This gives us already reasonable
predictions for the x- and y-coordinates in pixel space. Next, we
normalize that 2D output by subtracting the mean and dividing by
the standard deviation independently for each of the 17*2=34 joint
coordinates. Then, we train the Simple Baseline network with this
data for an uplifting to 3D and denormalize the output of shape
17*3=51 joint coordinates with the statistics on the ground truth
3D data of Human3.6M. From this output, we only extract the z-
coordinate of each of the 17 joints and concat it together with the x-
and y-coordinates of the 3D prediction of the Integral Regression

network. SH is trained on the concatenated training and validation
datasets of both Human3.6M and MPII (71750 samples) and ran
for 70 epochs. The network size was set to 𝑁 = 2 and the training
and validation batch size was set to 6 samples. The Learning Rate
started at 5e-4 and was reduced after 20 and 30 epochs respectively
with a factor of 0.1. SB is trained with an L1-Loss on the output of
the previously trained SH model for the concatenated dataset of the
training and validation set of Human3.6M. Batch size was set to 256
for the training phase (without a validation phase) for 192 epochs.
Learning rate started with 1.0e-3 and was decayed by a factor 0.96
after 31200 steps. The Integral Regression model was trained on
both MPII and Human3.6M training datasets with a starting learn-
ing rate of 0.001 and decay of 0.1 after epoch 270 and 290. Patch
width was set to 256x256 and data augmentation was set according
to [8]. We used an L1 loss for training. All three networks were
trained with ADAM as an optimizer with the remaining parame-
ters of ADAM for Pytorch (torch==1.8.1+cu111) left as default. SH
and SB were trained on the Leonhard cluster, IR was trained on an
NVIDIA Tesla V100 with 32GB GPU RAM available, rented from
the company ExaMesh GmbH, as the Leonhard Cluster was nearly
unavailable for us in the last weeks before the project deadline.
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